network.train(train_inputs, train_targets, 0.1)

时间: 2023-08-07 09:05:46 浏览: 42
这行代码使用了一个名为 `train` 的函数来训练一个神经网络。这个函数需要三个参数:`train_inputs`,`train_targets` 和 `0.1`。 `train_inputs` 是一个输入数据的数组,其中每一行代表一个样本,每一列代表一个特征。`train_targets` 是一个目标输出的数组,其中每一行对应于 `train_inputs` 中的一个样本,每一列代表一个目标输出。`0.1` 是学习率,它决定了在梯度下降过程中更新权重的步长大小。 这个函数的作用是通过反向传播算法来更新神经网络的权重,以便它可以更好地预测输入数据的目标输出。在训练过程中,神经网络将对每个样本进行前向传播来计算其输出,并比较其输出与目标输出之间的误差。然后,反向传播算法将通过计算误差关于每个权重的导数来更新权重,以减小误差。重复这个过程,直到误差足够小或达到了预定的训练次数。
相关问题

import numpy import scipy.special class NeuralNetwork(): def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate): self.inodes=inputnodes self.hnodes=hiddennodes self.onodes=outputnodes self.lr=learningrate self.wih=numpy.random.normal(0.0,pow(self.hnodes,-0.5),(self.hnodes,self.inodes)) self.who=numpy.random.normal(0.0,pow(self.onodes,-0.5),(self.onodes,self.hnodes)) self.activation_function=lambda x:scipy.special.expit(x) pass def train(self,input_list,target_list): inputs=numpy.array(input_list,ndmin=2).T targets=numpy.array(target_list,ndmin=2).T hidden_inputs=numpy.dot(self.wih,inputs) hidden_outputs=self.activation_function(hidden_inputs) final_inputs=numpy.dot(self.who,hidden_outputs) final_outputs=self.activation_function(final_inputs) output_errors=targets-final_outputs hidden_errors=numpy.dot(self.who.T,output_errors) self.who+=self.lr*numpy.dot((output_errors*final_outputs*(1.0-final_outputs)),numpy.transpose(hidden_outputs)) self.wih+=self.lr*numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),numpy.transpose(inputs)) pass def query(self,input_list): inputs=numpy.array(input_list,ndmin=2).T hidden_inputs=numpy.dot(self.wih,inputs) hidden_outputs=self.activation_function(hidden_inputs) final_inputs=numpy.dot(self.who,hidden_outputs) final_outputs=self.activation_function(final_inputs) return final_outputs print('n')写一下注释

以下是对代码的注释: ```python import numpy import scipy.special class NeuralNetwork(): def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate): # 初始化神经网络的输入层、隐藏层、输出层的节点数以及学习率 self.inodes = inputnodes self.hnodes = hiddennodes self.onodes = outputnodes self.lr = learningrate # 初始化输入层到隐藏层和隐藏层到输出层的权重 # 对权重进行随机初始化,取值范围为均值为0,标准差为节点数的负平方根 self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes)) self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes)) # 定义激活函数为 sigmoid 函数 self.activation_function = lambda x: scipy.special.expit(x) def train(self,input_list,target_list): # 将输入列表和目标列表转换为二维数组 inputs = numpy.array(input_list, ndmin=2).T targets = numpy.array(target_list, ndmin=2).T # 计算隐藏层的输入和输出 hidden_inputs = numpy.dot(self.wih, inputs) hidden_outputs = self.activation_function(hidden_inputs) # 计算输出层的输入和输出 final_inputs = numpy.dot(self.who, hidden_outputs) final_outputs = self.activation_function(final_inputs) # 计算输出层误差和隐藏层误差 output_errors = targets - final_outputs hidden_errors = numpy.dot(self.who.T, output_errors) # 更新隐藏层到输出层和输入层到隐藏层的权重 self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs)) self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs)) def query(self,input_list): # 将输入列表转换为二维数组 inputs = numpy.array(input_list, ndmin=2).T # 计算隐藏层的输入和输出 hidden_inputs = numpy.dot(self.wih, inputs) hidden_outputs = self.activation_function(hidden_inputs) # 计算输出层的输入和输出 final_inputs = numpy.dot(self.who, hidden_outputs) final_outputs = self.activation_function(final_inputs) # 返回最终输出 return final_outputs # 创建神经网络实例 input_nodes = 3 hidden_nodes = 3 output_nodes = 3 learning_rate = 0.3 n = NeuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate) # 使用训练数据进行训练 training_data = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]] for data in training_data: n.train(data, data) # 使用测试数据进行测试 test_data = [0.2, 0.5, 0.8] print(n.query(test_data)) ``` 这个神经网络实现了一个简单的自编码器,训练数据和测试数据都是由一些简单的数字组成。

import numpy as np class BPNeuralNetwork: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化权重和偏置 self.weights_ih = np.random.randn(hidden_size, input_size) self.bias_ih = np.random.randn(hidden_size, 1) self.weights_ho = np.random.randn(output_size, hidden_size) self.bias_ho = np.random.randn(output_size, 1) # 定义激活函数 self.activation = lambda x: 1 / (1 + np.exp(-x)) self.derivative = lambda x: x * (1 - x) def forward(self, inputs): # 计算隐藏层的输出 hidden = self.activation(np.dot(self.weights_ih, inputs) + self.bias_ih) # 计算输出层的输出 output = self.activation(np.dot(self.weights_ho, hidden) + self.bias_ho) return output def backward(self, inputs, targets, output): # 计算输出层的误差 output_error = targets - output output_delta = output_error * self.derivative(output) # 计算隐藏层的误差 hidden_error = np.dot(self.weights_ho.T, output_delta) hidden_delta = hidden_error * self.derivative(hidden) # 更新权重和偏置 self.weights_ho += np.dot(output_delta, hidden.T) self.bias_ho += output_delta self.weights_ih += np.dot(hidden_delta, inputs.T) self.bias_ih += hidden_delta def train(self, inputs, targets, epochs): for i in range(epochs): for j in range(len(inputs)): # 前向传播 output = self.forward(inputs[j].reshape(-1, 1)) # 反向传播 self.backward(inputs[j].reshape(-1, 1), targets[j].reshape(-1, 1), output)

这段代码实现了一个使用反向传播算法进行训练的多层前馈神经网络。具体来说,它包括了以下几个部分: 1. 初始化函数__init__中,定义了输入层、隐藏层和输出层的节点数,以及它们之间的权重和偏置。其中,权重和偏置都是随机初始化的。 2. 定义了激活函数activation和导数函数derivative,这里采用的是Sigmoid函数。 3. 前向传播函数forward中,通过输入数据和当前的权重和偏置计算出隐藏层和输出层的输出值。 4. 反向传播函数backward中,通过目标值和当前的输出值计算出输出层的误差,然后通过权重矩阵的转置和输出层误差计算隐藏层的误差,最后更新权重和偏置。 5. 训练函数train中,通过迭代的方式对网络进行训练,每次迭代都遍历所有的输入数据,并调用前向传播和反向传播函数来更新权重和偏置。训练的次数由参数epochs指定。 这段代码实现了一个基本的神经网络,可以用于解决一些简单的分类和回归问题。但是需要注意的是,它还有很多可以改进的地方,比如添加正则化、使用其他的激活函数、调整学习率等等。

相关推荐

最新推荐

recommend-type

setuptools-33.1.1-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。