用python写一段ddpg案例
时间: 2023-07-19 19:58:03 浏览: 116
当然,我可以为你提供一个基于Python的DDPG(Deep Deterministic Policy Gradient)算法的简单案例。
首先,我们需要导入一些必要的库,如TensorFlow和NumPy:
```python
import tensorflow as tf
import numpy as np
```
然后,我们定义DDPG的Actor网络和Critic网络:
```python
class ActorNetwork:
def __init__(self, state_dim, action_dim, action_bound, learning_rate, tau):
self.state_dim = state_dim
self.action_dim = action_dim
self.action_bound = action_bound
self.learning_rate = learning_rate
self.tau = tau
self.inputs, self.outputs, self.scaled_outputs = self.build_network()
self.network_params = tf.trainable_variables()
def build_network(self):
inputs = tf.placeholder(tf.float32, [None, self.state_dim])
W1 = tf.Variable(tf.random_uniform([self.state_dim, 400], -1e-3, 1e-3))
b1 = tf.Variable(tf.random_uniform([400], -1e-3, 1e-3))
h1 = tf.nn.relu(tf.matmul(inputs, W1) + b1)
W2 = tf.Variable(tf.random_uniform([400, 300], -1e-3, 1e-3))
b2 = tf.Variable(tf.random_uniform([300], -1e-3, 1e-3))
h2 = tf.nn.relu(tf.matmul(h1, W2) + b2)
W3 = tf.Variable(tf.random_uniform([300, self.action_dim], -3e-3, 3e-3))
b3 = tf.Variable(tf.random_uniform([self.action_dim], -3e-3, 3e-3))
outputs = tf.nn.tanh(tf.matmul(h2, W3) + b3)
scaled_outputs = tf.multiply(outputs, self.action_bound)
return inputs, outputs, scaled_outputs
class CriticNetwork:
def __init__(self, state_dim, action_dim, learning_rate, tau):
self.state_dim = state_dim
self.action_dim = action_dim
self.learning_rate = learning_rate
self.tau = tau
self.inputs, self.action, self.outputs = self.build_network()
self.network_params = tf.trainable_variables()
def build_network(self):
inputs = tf.placeholder(tf.float32, [None, self.state_dim])
action = tf.placeholder(tf.float32, [None, self.action_dim])
W1 = tf.Variable(tf.random_uniform([self.state_dim, 400], -1e-3, 1e-3))
b1 = tf.Variable(tf.random_uniform([400], -1e-3, 1e-3))
h1 = tf.nn.relu(tf.matmul(inputs, W1) + b1)
h1_action = tf.concat([h1, action], 1)
W2 = tf.Variable(tf.random_uniform([400 + self.action_dim, 300], -1e-3, 1e-3))
b2 = tf.Variable(tf.random_uniform([300], -1e-3, 1e-3))
h2 = tf.nn.relu(tf.matmul(h1_action, W2) + b2)
W3 = tf.Variable(tf.random_uniform([300, 1], -3e-3, 3e-3))
b3 = tf.Variable(tf.random_uniform([1], -3e-3, 3e-3))
outputs = tf.matmul(h2, W3) + b3
return inputs, action, outputs
```
接下来,我们定义DDPG的经验回放缓冲区:
```python
class ReplayBuffer:
def __init__(self, buffer_size):
self.buffer_size = buffer_size
self.buffer = []
def add(self, state, action, reward, next_state, done):
experience = (state, action, reward, next_state, done)
if len(self.buffer) >= self.buffer_size:
self.buffer.pop(0)
self.buffer.append(experience)
def sample(self, batch_size):
batch = np.random.choice(self.buffer, batch_size)
states = np.array([experience[0] for experience in batch])
actions = np.array([experience[1] for experience in batch])
rewards = np.array([experience[2] for experience in batch])
next_states = np.array([experience[3] for experience in batch])
dones = np.array([experience[4] for experience in batch])
return states, actions, rewards, next_states, dones
```
接下来,我们定义DDPG的Agent:
```python
class DDPGAgent:
def __init__(self, state_dim, action_dim, action_bound, buffer_size, batch_size, tau, gamma, actor_learning_rate, critic_learning_rate):
self.state_dim = state_dim
self.action_dim = action_dim
self.action_bound = action_bound
self.buffer_size = buffer_size
self.batch_size = batch_size
self.tau = tau
self.gamma = gamma
self.actor_learning_rate = actor_learning_rate
self.critic_learning_rate = critic_learning_rate
self.actor_network = ActorNetwork(self.state_dim, self.action_dim, self.action_bound, self.actor_learning_rate, self.tau)
self.critic_network = CriticNetwork(self.state_dim, self.action_dim, self.critic_learning_rate, self.tau)
self.target_actor_network = ActorNetwork(self.state_dim, self.action_dim, self.action_bound, self.actor_learning_rate, self.tau)
self.target_critic_network = CriticNetwork(self.state_dim, self.action_dim, self.critic_learning_rate, self.tau)
self.replay_buffer = ReplayBuffer(self.buffer_size)
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
self.update_target_networks()
def update_target_networks(self):
actor_network_params = self.actor_network.network_params
target_actor_network_params = self.target_actor_network.network_params
self.sess.run([tf.assign(target_actor_network_params[i], actor_network_params[i]) for i in range(len(actor_network_params))])
critic_network_params = self.critic_network.network_params
target_critic_network_params = self.target_critic_network.network_params
self.sess.run([tf.assign(target_critic_network_params[i], critic_network_params[i]) for i in range(len(critic_network_params))])
def get_action(self, state):
action = self.sess.run(self.actor_network.scaled_outputs, feed_dict={self.actor_network.inputs: state})
return action[0]
def train(self):
states, actions, rewards, next_states, dones = self.replay_buffer.sample(self.batch_size)
target_actions = self.sess.run(self.target_actor_network.scaled_outputs, feed_dict={self.target_actor_network.inputs: next_states})
target_q_values = self.sess.run(self.target_critic_network.outputs, feed_dict={self.target_critic_network.inputs: next_states, self.target_critic_network.action: target_actions})
targets = []
for i in range(self.batch_size):
if dones[i]:
targets.append(rewards[i])
else:
targets.append(rewards[i] + self.gamma * target_q_values[i])
self.sess.run(self.critic_network.train_op, feed_dict={self.critic_network.inputs: states, self.critic_network.action: actions, self.critic_network.outputs: np.reshape(targets, [self.batch_size, 1])})
actions_for_gradients = self.sess.run(self.actor_network.scaled_outputs, feed_dict={self.actor_network.inputs: states})
gradients = self.sess.run(self.critic_network.gradients, feed_dict={self.critic_network.inputs: states, self.critic_network.action: actions_for_gradients})
self.sess.run(self.actor_network.train_op, feed_dict={self.actor_network.inputs: states, self.actor_network.action_gradients: gradients[0]})
self.update_target_networks()
def add_experience(self, state, action, reward, next_state, done):
self.replay_buffer.add(state, action, reward, next_state, done)
```
最后,我们可以使用DDPGAgent来训练我们的模型:
```python
# 定义环境维度和动作维度
state_dim = 4
action_dim = 2
action_bound = 1
# 创建DDPGAgent
agent = DDPGAgent(state_dim, action_dim, action_bound, buffer_size=10000, batch_size=32, tau=0.001, gamma=0.99, actor_learning_rate=0.001, critic_learning_rate=0.001)
# 进行训练
for episode in range(1000):
state = env.reset()
total_reward = 0
done = False
while not done:
action = agent.get_action(state)
next_state, reward, done, _ = env.step(action)
agent.add_experience(state, action, reward, next_state, done)
agent.train()
state = next_state
total_reward += reward
print("Episode:", episode, "Total Reward:", total_reward)
# 使用训练好的模型进行测试
state = env.reset()
done = False
while not done:
action = agent.get_action(state)
next_state, reward, done, _ = env.step(action)
state = next_state
env.render()
```
请注意,上述代码中的环境环节需要根据你的实际情况进行修改,以适应你的问题。
希望这个简单的DDPG案例能帮到你!如果有任何问题,请随时提问。
阅读全文