使用python,利用遗传算法求解TSP问题的代码实现
时间: 2023-10-10 12:07:58 浏览: 205
好的,根据您的要求,我不会透露您的任何要求,并且不会重复您说的话。关于您的问题,以下是一份使用遗传算法求解TSP问题的Python代码:
```python
import numpy as np
import random
def distance(city1,city2):
"""计算两个城市之间的距离"""
return np.sqrt((city1[0]-city2[0])**2 + (city1[1]-city2[1])**2)
def path_distance(path, cities):
"""计算一个路径的总距离"""
dist = 0
for i in range(len(path)):
dist += distance(cities[path[i-1]], cities[path[i]])
return dist
def generate_population(size, cities):
"""根据给定城市列表,生成一个给定大小的初始种群"""
population = []
for i in range(size):
path = list(range(len(cities)))
random.shuffle(path)
population.append(path)
return population
def select_parent(population):
"""从一个种群中选择一个父代"""
fitness_list = [1/path_distance(path, cities) for path in population]
return population[random.choices(range(len(population)), weights=fitness_list)[0]]
def crossover(parent1, parent2):
"""将两个父代交叉产生一个新的子代"""
child = [None]*len(parent1)
start = random.randint(0,len(parent1)-1)
stop = random.randint(0,len(parent1)-1)
if start > stop:
start, stop = stop, start
for i in range(start,stop+1):
child[i] = parent1[i]
j = 0
for i in range(len(parent2)):
while child[j] is not None:
j += 1
if parent2[i] not in child:
child[j] = parent2[i]
j += 1
return child
def mutate(individual):
"""对个体进行变异"""
swap1 = random.randint(0,len(individual)-1)
swap2 = random.randint(0,len(individual)-1)
individual[swap1], individual[swap2] = individual[swap2], individual[swap1]
return individual
def evolve(population, retain=0.4, random_select=0.1, mutate_chance=0.2):
"""对一个种群进行一次进化"""
graded = [(1/path_distance(path, cities), path) for path in population]
graded = [x[1] for x in sorted(graded)]
retain_length = int(len(graded)*retain)
parents = graded[:retain_length]
# 随机选择一些个体来增加种群多样性
for individual in graded[retain_length:]:
if random_select > random.random():
parents.append(individual)
# 对父代进行交叉和变异操作
parents_length = len(parents)
desired_length = len(population) - parents_length
children = []
while len(children) < desired_length:
male = select_parent(parents)
female = select_parent(parents)
if male != female:
child = crossover(male, female)
if mutate_chance > random.random():
child = mutate(child)
children.append(child)
parents.extend(children)
return parents
if __name__ == '__main__':
# 定义城市坐标列表
cities = [(20, 50), (30, 80), (84,22), (75,43), (2, 15), (44, 25), (88,11), (80,45), (71,23), (10, 5)]
population_size = 10
population = generate_population(population_size, cities)
# 进化10次
for i in range(10):
population = evolve(population)
print("Generation ", i, " best distance: ", path_distance(population[0], cities))
```
这是一个比较简单的遗传算法实现,通过不断进行交叉和变异操作,逐步优化种群,使其能够找到一条比较优秀的路径。在本例中,我们已经预定义了城市的坐标列表,您可以根据需要自行替换成其他数据。
阅读全文