R语言做广义线性混合模型如何得到η2
时间: 2023-07-24 15:18:47 浏览: 380
在广义线性混合模型中,η2代表的是固定效应解释的方差比例,可以通过计算模型的Marginal和条件R2来获得。
Marginal R2表示模型中所有的固定效应解释的方差占据了总方差的比例,而条件R2表示模型中固定效应和随机效应共同解释的方差占据了总方差的比例。
在R语言中,可以使用lme4包来拟合广义线性混合模型,并使用MuMIn包中的r.squaredGLMM函数来计算Marginal和条件R2。具体步骤如下:
1. 安装和加载lme4和MuMIn包
```R
install.packages("lme4")
install.packages("MuMIn")
library(lme4)
library(MuMIn)
```
2. 拟合广义线性混合模型
假设我们有一个响应变量y,一个自变量x和一个随机效应因子group,可以使用lmer函数来拟合广义线性混合模型:
```R
model <- lmer(y ~ x + (1|group), data = mydata)
```
3. 计算Marginal和条件R2
使用r.squaredGLMM函数来计算Marginal和条件R2:
```R
r.squaredGLMM(model)
```
该函数会返回一个列表,包含Marginal和条件R2的值。
需要注意的是,计算R2值需要考虑到模型的复杂度和拟合优度,因此不应该只根据R2值来选择模型或进行解释。
相关问题
R语言做广义线性混合模型如何得到每一个固定效应的η2
在R语言中,可以使用`rsq.GLMM()`函数来得到每一个固定效应的η2。这个函数需要使用lme4包中的`glmer()`函数拟合广义线性混合模型,然后使用`rsq.GLMM()`函数来计算每个固定效应的η2。
具体步骤如下:
1.加载lme4包
2.使用`glmer()`函数拟合广义线性混合模型,例如:
```
library(lme4)
model <- glmer(response ~ fixed_effect1 + fixed_effect2 + (1 | random_effect), data = mydata, family = binomial)
```
其中,response是因变量,fixed_effect1和fixed_effect2是固定效应,random_effect是随机效应,mydata是数据集,family是分布族,这里使用二项分布。
3.使用`rsq.GLMM()`函数计算每个固定效应的η2,例如:
```
library(MuMIn)
rsq.GLMM(model)
```
这个函数将返回每个固定效应的η2值。注意,这个函数需要安装MuMIn包。
阅读全文