那么每个符号的概率分布和编码长度如何从给定的 probs 和 code 中计算得到
时间: 2024-03-31 14:37:41 浏览: 47
在进行算术编码时,需要将编码区间划分为一系列子区间,每个子区间对应一个符号。根据符号的概率分布,可以计算出每个子区间的长度,进而得到每个符号的编码长度。
具体地,假设要对一个符号集合 S 进行算术编码,其中第 i 个符号的概率为 pi,对应的编码区间为 [Li, Ui),中点为 ci,给定的编码区间的中点为 code。则可以按照以下步骤计算每个符号的概率分布和编码长度:
1. 对符号集合进行排序,使得 p1 >= p2 >= ... >= pn。
2. 初始化编码区间的上下界为 [0, 1),即 L=0,U=1。
3. 对于每个符号 i,根据其概率分布 pi,计算编码区间的长度 delta = (U - L) * pi。
4. 根据 delta 更新编码区间的上下界,得到新的编码区间 [L, U)。
5. 如果当前的编码区间包含了给定的编码区间的中点 code,则当前符号的编码长度为 log2((U - L) / pi);否则,继续执行第3步和第4步,直到找到包含 code 的子区间。
需要注意的是,为了避免精度误差和溢出问题,上下界 L 和 U 通常使用高精度算术来表示。同时,在计算编码长度时,需要对结果进行四舍五入,以得到整数位数的编码长度。
相关问题
我们已经得到了压缩后的编码区间的中点 code,以及对应的符号概率分布 probs对二维灰度图像进行算术编码,怎么求编码后的平均位数
以下是一个 Matlab 代码示例,用于计算二维灰度图像的算术编码后的平均位数:
```matlab
% 输入:code - 编码区间的中点
% probs - 符号概率分布,是一个二维矩阵,每个元素表示对应符号的概率
% 输出:average_length - 编码后的平均位数,单位为比特(bit)
% 获取符号集合大小
[row, col] = size(probs);
num_symbols = row * col;
% 将符号概率分布转化为一个向量,方便后续计算
probs_vec = reshape(probs, [], 1);
% 对符号概率分布进行排序,得到每个符号的概率和索引
[sorted_probs, symbol_indices] = sort(probs_vec, 'descend');
% 计算每个符号的编码长度
L = zeros(num_symbols, 1);
U = ones(num_symbols, 1);
for i = 1:num_symbols
symbol_index = symbol_indices(i);
symbol_prob = sorted_probs(i);
delta = (U - L) * symbol_prob;
U(symbol_index) = L(symbol_index) + delta;
L(symbol_index+1:end) = U(symbol_index);
end
lengths = -log2(sorted_probs);
lengths = round(lengths * 1000000) / 1000000;
% 计算编码后的平均位数
average_length = 0;
for i = 1:num_symbols
symbol_index = symbol_indices(i);
symbol_prob = probs_vec(symbol_index);
symbol_length = lengths(i);
average_length = average_length + symbol_prob * symbol_length;
end
% 显示结果
fprintf('编码后的平均位数为:%.6f bit\n', average_length);
```
这个代码中,我们首先将符号概率分布转化为一个向量,然后对其进行排序,得到每个符号的概率和索引。接着,我们根据每个符号的概率和编码区间长度,计算出每个符号的编码长度。最后,我们将每个符号的概率和编码长度相乘,再求和,得到编码后的平均位数。请注意,为了避免精度误差,我们在计算编码长度时对结果进行了四舍五入。
我们已经得到了压缩后的编码区间的中点 code,以及对应的符号概率分布 probs怎样对二维灰度图像进行算术编码,给出matlab程序
首先,需要将二维灰度图像转换为一维灰度值序列。然后,根据概率分布 probs 计算出每个灰度值的累积概率分布。接下来,根据中点 code 和累积概率分布进行解码,得到原始的灰度值序列。
以下是一个简单的 MATLAB 程序实现:
```matlab
% 将二维灰度图像转换为一维灰度值序列
gray_img = imread('image.jpg');
gray_seq = gray_img(:);
% 计算灰度值的概率分布
probs = histcounts(gray_seq, 0:255) / numel(gray_seq);
% 计算灰度值的累积概率分布
cum_probs = cumsum(probs);
% 算术编码解码
code = 0.5;
range = 1;
for i = 1:numel(gray_seq)
symbol = gray_seq(i) + 1; % 灰度值从0~255,加1后从1~256
range = range * probs(symbol);
code = code + range * cum_probs(symbol-1);
range = range * probs(symbol);
end
% 算术编码解码得到的灰度值序列
decoded_seq = zeros(size(gray_seq));
for i = numel(gray_seq):-1:1
for j = 1:256
if code < cum_probs(j)
decoded_seq(i) = j - 1;
range = range * probs(j);
code = (code - cum_probs(j-1)) / range;
break;
end
end
end
% 将一维灰度值序列转换回二维灰度图像
decoded_img = reshape(decoded_seq, size(gray_img));
imshow(decoded_img);
```
需要注意的是,在实际应用中,需要使用更高效的算法和数据结构来计算累积概率分布和解码。
阅读全文