batch norm放在sigmoid后吗

时间: 2023-06-13 22:03:36 浏览: 50
通常来说,Batch Normalization(BN)的操作应该放在激活函数之前。这是因为在神经网络中,激活函数(如Sigmoid)的输入分布通常不是标准正态分布,而是具有一定偏移和方差的分布。这导致了梯度消失或梯度爆炸等问题的出现。而BN就是为了解决这个问题而被提出的方法,它可以使得输入分布更加平稳,从而提高模型的训练效果。 如果将BN放在Sigmoid之后,那么BN的效果就会被削弱,因为Sigmoid函数的输出不是均值为0,方差为1的标准正态分布,而是具有一定偏移和方差的分布。因此,如果要在神经网络中使用BN,通常应该将其放在激活函数之前。
相关问题

class UNetEx(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size=3, filters=[16, 32, 64], layers=3, weight_norm=True, batch_norm=True, activation=nn.ReLU, final_activation=None): super().__init__() assert len(filters) > 0 self.final_activation = final_activation self.encoder = create_encoder(in_channels, filters, kernel_size, weight_norm, batch_norm, activation, layers) decoders = [] for i in range(out_channels): decoders.append(create_decoder(1, filters, kernel_size, weight_norm, batch_norm, activation, layers)) self.decoders = nn.Sequential(*decoders) def encode(self, x): tensors = [] indices = [] sizes = [] for encoder in self.encoder: x = encoder(x) sizes.append(x.shape) tensors.append(x) x, ind = F.max_pool2d(x, 2, 2, return_mask=True) indices.append(ind) return x, tensors, indices, sizes def decode(self, _x, _tensors, _indices, _sizes): y = [] for _decoder in self.decoders: x = _x tensors = _tensors[:] indices = _indices[:] sizes = _sizes[:] for decoder in _decoder: tensor = tensors.pop() size = sizes.pop() ind = indices.pop() # 反池化操作,为上采样 x = F.max_unpool2d(x, ind, 2, 2, output_size=size) x = paddle.concat([tensor, x], axis=1) x = decoder(x) y.append(x) return paddle.concat(y, axis=1) def forward(self, x): x, tensors, indices, sizes = self.encode(x) x = self.decode(x, tensors, indices, sizes) if self.final_activation is not None: x = self.final_activation(x) return x 不修改上述神经网络的encoder和decoder的生成方式,用嘴少量的代码实现attention机制,在上述代码里修改。

可以在UNetEx类中加入一个Attention模块,然后在decode函数中使用该Attention模块。具体实现如下: ``` class Attention(nn.Layer): def __init__(self, in_channels, out_channels): super().__init__() self.conv1 = nn.Conv2D(in_channels, out_channels, kernel_size=1) self.conv2 = nn.Conv2D(out_channels, out_channels, kernel_size=1) def forward(self, x, y): x = self.conv1(x) y = self.conv2(y) z = paddle.add(x, y) z = nn.functional.sigmoid(z) z = paddle.multiply(x, z) return z class UNetEx(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size=3, filters=[16, 32, 64], layers=3, weight_norm=True, batch_norm=True, activation=nn.ReLU, final_activation=None): super().__init__() assert len(filters) > 0 self.final_activation = final_activation self.encoder = create_encoder(in_channels, filters, kernel_size, weight_norm, batch_norm, activation, layers) self.attention = Attention(filters[-1], filters[-1]) decoders = [] for i in range(out_channels): decoders.append(create_decoder(1, filters, kernel_size, weight_norm, batch_norm, activation, layers)) self.decoders = nn.Sequential(*decoders) def encode(self, x): tensors = [] indices = [] sizes = [] for encoder in self.encoder: x = encoder(x) sizes.append(x.shape) tensors.append(x) x, ind = F.max_pool2d(x, 2, 2, return_mask=True) indices.append(ind) return x, tensors, indices, sizes def decode(self, _x, _tensors, _indices, _sizes): y = [] for _decoder in self.decoders: x = _x tensors = _tensors[:] indices = _indices[:] sizes = _sizes[:] for decoder in _decoder: tensor = tensors.pop() size = sizes.pop() ind = indices.pop() # 反池化操作,为上采样 x = F.max_unpool2d(x, ind, 2, 2, output_size=size) x = self.attention(tensor, x) # 使用Attention模块 x = decoder(x) y.append(x) return paddle.concat(y, axis=1) def forward(self, x): x, tensors, indices, sizes = self.encode(x) x = self.decode(x, tensors, indices, sizes) if self.final_activation is not None: x = self.final_activation(x) return x ``` 在该代码中,我们增加了一个Attention类,它接收两个特征图,通过两个1x1卷积层将它们映射到同一维度,然后将它们相加并通过sigmoid函数归一化,最后将第一个特征图与归一化后的结果相乘得到注意力加权后的特征图。在UNetEx类中,我们在decoder函数中使用了Attention类,并将encoder中的最后一层特征图与decoder中的每一层特征图进行注意力加权。这样就实现了在UNetEx中加入Attention机制。

Complete the code for Differentially Private Stochastic Gradient Descent. a. Fill in the code for per-example clipping and adding Gaussian noise. b. Implement the privacy budget composition. Calculate the privacy budget of the training process, which means calculating $\epsilon$ based on the variance of Gaussian noise $\sigma^2$ and the given $\delta = 10^{-5}$ in different epochs. You can use basic composition to complete the code. If you correctly apply the Moments Accountant method, you will receive bonus points. import numpy as np from scipy import optimize from scipy.stats import norm import math """ Optionally you could use moments accountant to implement the epsilon calculation. """ def get_epsilon(epoch, delta, sigma, sensitivity, batch_size, training_nums): """ Compute epsilon with basic composition from given epoch, delta, sigma, sensitivity, batch_size and the number of training set. """ return epsilon

Here is the completed code for Differentially Private Stochastic Gradient Descent, including per-example clipping and adding Gaussian noise as well as privacy budget composition: ```python import numpy as np from scipy import optimize from scipy.stats import norm import math def per_example_clipping(grad, clip_factor): """ Clip the gradient per example with a given clip factor. """ return np.clip(grad, -clip_factor, clip_factor) def add_gaussian_noise(grad, sigma): """ Add Gaussian noise to the gradient with a given standard deviation. """ return grad + np.random.normal(0, sigma, grad.shape) def get_epsilon(epoch, delta, sigma, sensitivity, batch_size, training_nums): """ Compute epsilon with basic composition from given epoch, delta, sigma, sensitivity, batch_size and the number of training set. """ steps = math.ceil(training_nums / batch_size) * epoch epsilon = sigma * math.sqrt(2 * math.log(1.25 / delta)) / sensitivity return epsilon * steps def dp_sgd(X, y, epochs, batch_size, clip_factor, sigma, delta): n, d = X.shape w = np.zeros(d) for epoch in range(epochs): for i in range(0, n, batch_size): X_batch = X[i:i+batch_size] y_batch = y[i:i+batch_size] grad = np.mean(X_batch * (sigmoid(X_batch.dot(w)) - y_batch).reshape(-1, 1), axis=0) clipped_grad = per_example_clipping(grad, clip_factor) noise_grad = add_gaussian_noise(clipped_grad, sigma) w -= noise_grad epsilon = get_epsilon(epoch+1, delta, sigma, clip_factor/batch_size, batch_size, n) print("Epoch {}: Epsilon = {}".format(epoch+1, epsilon)) return w ``` The `per_example_clipping` function clips the gradient per example with a given clip factor. The `add_gaussian_noise` function adds Gaussian noise to the gradient with a given standard deviation. The `get_epsilon` function computes epsilon with basic composition from given epoch, delta, sigma, sensitivity, batch_size and the number of training set. The `dp_sgd` function performs Differentially Private Stochastic Gradient Descent. For each epoch, it loops over the training set in batches and computes the gradient of the loss function using the sigmoid function. It then clips the gradient per example, adds Gaussian noise to the clipped gradient, and updates the weight vector. Finally, it computes the privacy budget using the `get_epsilon` function and prints it out. Note that the `get_epsilon` function uses basic composition to compute the privacy budget. It calculates the total number of steps based on the number of epochs and the batch size, and then uses the formula for epsilon with basic composition to compute the privacy budget for each epoch. It is worth noting that basic composition may not provide the tightest bound on privacy, and using the Moments Accountant method may provide a tighter bound.

相关推荐

class ResidualBlock(nn.Module): def init(self, in_channels, out_channels, dilation): super(ResidualBlock, self).init() self.conv = nn.Sequential( nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU(), nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU() ) self.attention = nn.Sequential( nn.Conv1d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.downsample = nn.Conv1d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else None def forward(self, x): residual = x out = self.conv(x) attention = self.attention(out) out = out * attention if self.downsample: residual = self.downsample(residual) out += residual return out class VMD_TCN(nn.Module): def init(self, input_size, output_size, n_k=1, num_channels=16, dropout=0.2): super(VMD_TCN, self).init() self.input_size = input_size self.nk = n_k if isinstance(num_channels, int): num_channels = [num_channels*(2**i) for i in range(4)] self.layers = nn.ModuleList() self.layers.append(nn.utils.weight_norm(nn.Conv1d(input_size, num_channels[0], kernel_size=1))) for i in range(len(num_channels)): dilation_size = 2 ** i in_channels = num_channels[i-1] if i > 0 else num_channels[0] out_channels = num_channels[i] self.layers.append(ResidualBlock(in_channels, out_channels, dilation_size)) self.pool = nn.AdaptiveMaxPool1d(1) self.fc = nn.Linear(num_channels[-1], output_size) self.w = nn.Sequential(nn.Conv1d(num_channels[-1], num_channels[-1], kernel_size=1), nn.Sigmoid()) # 特征融合 门控系统 # self.fc1 = nn.Linear(output_size * (n_k + 1), output_size) # 全部融合 self.fc1 = nn.Linear(output_size * 2, output_size) # 只选择其中两个融合 self.dropout = nn.Dropout(dropout) # self.weight_fc = nn.Linear(num_channels[-1] * (n_k + 1), n_k + 1) # 置信度系数,对各个结果加权平均 软投票思路 def vmd(self, x): x_imfs = [] signal = np.array(x).flatten() # flatten()必须加上 否则最后一个batch报错size不匹配! u, u_hat, omega = VMD(signal, alpha=512, tau=0, K=self.nk, DC=0, init=1, tol=1e-7) for i in range(u.shape[0]): imf = torch.tensor(u[i], dtype=torch.float32) imf = imf.reshape(-1, 1, self.input_size) x_imfs.append(imf) x_imfs.append(x) return x_imfs def forward(self, x): x_imfs = self.vmd(x) total_out = [] # for data in x_imfs: for data in [x_imfs[0], x_imfs[-1]]: out = data.transpose(1, 2) for layer in self.layers: out = layer(out) out = self.pool(out) # torch.Size([96, 56, 1]) w = self.w(out) out = w * out # torch.Size([96, 56, 1]) out = out.view(out.size(0), -1) out = self.dropout(out) out = self.fc(out) total_out.append(out) total_out = torch.cat(total_out, dim=1) # 考虑w1total_out[0]+ w2total_out[1],在第一维,权重相加得到最终结果,不用cat total_out = self.dropout(total_out) output = self.fc1(total_out) return output优化代码

最新推荐

recommend-type

基于三层感知机实现手写数字识别-内含源码和说明书.zip

基于三层感知机实现手写数字识别-内含源码和说明书.zip
recommend-type

setuptools-40.7.0.zip

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

搭建VGG16神经网络实现图像分类-内含源码和说明书.zip

搭建VGG16神经网络实现图像分类-内含源码和说明书.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这