sns.pairplot(data[column],diag_kind='kde') plt.savefig('Scatter plot.jpg',dpi=256) #Pearson's correlation coefficient heatmap corr = plt.figure(figsize = (10,10),dpi=128) corr= sns.heatmap(data[column].corr(),annot=True,square=True) plt.xticks(rotation=40) import statsmodels.formula.api as smf all_columns = "+".join(data.columns[1:]) print('x is :'+all_columns) formula = 'GDP~' + all_columns print('The regression equation is :'+formula) results = smf.ols(formula, data=data).fit() results.summary() X=data.iloc[:,1:] y=data.iloc[:,0]
时间: 2024-04-20 18:25:44 浏览: 252
这段代码实现了以下功能:
首先,使用"sns.pairplot(data[column],diag_kind='kde')"绘制了一个散点图矩阵,并选择了核密度估计作为对角线上的图形。
然后使用"plt.savefig('Scatter plot.jpg',dpi=256)"将图形保存为名为"Scatter plot.jpg"的文件,分辨率为256 dpi。
接下来,创建一个名为"corr"的图形对象,大小为(10,10),分辨率为128,使用"corr = plt.figure(figsize=(10,10), dpi=128)"。
然后,使用"sns.heatmap(data[column].corr(),annot=True,square=True)"绘制基于"data[column]"数据框的列之间的皮尔逊相关系数热力图,并设置"annot=True"以在每个单元格中显示相关系数的值,"square=True"表示将单元格设置为正方形。
通过"plt.xticks(rotation=40)"可以旋转x轴刻度标签,使其更易读。
接下来,导入"statsmodels.formula.api"模块,并使用"all_columns = "+".join(data.columns[1:])"将"data"数据框中除第一列外的所有列名拼接为一个字符串,存储在名为"all_columns"的变量中。
然后,打印出"x is :"以及"all_columns"的值,显示回归方程中自变量的组成。
继续打印出"The regression equation is :"以及"formula"的值,显示回归方程的形式。
接下来,使用"smf.ols(formula, data=data).fit()"进行普通最小二乘(OLS)回归分析,将结果存储在名为"results"的变量中。
最后,通过"X=data.iloc[:,1:]"将"data"数据框中除第一列外的所有列作为自变量存储在名为"X"的变量中,通过"y=data.iloc[:,0]"将"data"数据框的第一列作为因变量存储在名为"y"的变量中。
阅读全文