g = sns.pairplot(data, diag_kind='hist', plot_kws={'color': 'purple', 'edgecolor': 'purple', 'marker': 'o'})请改写错误并解释

时间: 2024-09-20 12:05:31 浏览: 16
这个代码片段看起来是在使用seaborn库(sns)中的pairplot函数来创建一个对角线为直方图的散点图网格。但是有两处潜在的错误: 1. `g = sns.pairplot(data, diag_kind='hist')`: 这行是正确的,它设置了对角线图的类型为直方图('hist')。对角线上通常会展示各个变量的分布情况。 2. `plot_kws={'color': 'purple', 'edgecolor': 'purple', 'marker': 'o'}`: 这部分用于设置散点图的共性样式,但`plot_kws`应该放在`pairplot`函数的最后作为关键字参数传递给`kind`参数,而不是作为单独的参数。正确的语法应该是: ```python sns.pairplot(data, diag_kind='hist', plot_kws=dict(color='purple', edgecolor='purple', marker='o')) ``` 解释: - `dict()`是用来创建字典的,`plot_kws=dict()`创建了一个键值对列表,用于传递绘图的额外参数。 - 使用`dict()`是因为`plot_kws`需要的是一个可以动态传入参数的对象,而不是直接字符串形式。 修正后的代码: ```python g = sns.pairplot(data, diag_kind='hist', plot_kws=dict(color='purple', edgecolor='purple', marker='o')) ```
相关问题

sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))

这是一段代码,它调用了 seaborn 库的 pairplot() 函数来绘制数据集中的多个变量之间的关系图。其中 x 是一个 pandas DataFrame 或 Series,corner=True 表示将上三角和下三角都显示数据,diag_kind='auto' 表示根据数据类型自动选择对角线上的图表类型,kind='hist' 表示非对角线上用直方图显示数据,diag_kws=dict(bins=50) 表示对角线上的直方图分成 50 个小区间,plot_kws=dict(pmax=0.9) 表示在绘制散点图时,只显示 p 值小于等于 0.9 的点。

# 数字特征相互之间的关系可视化 sns.set() columns = ['price', 'v_12', 'v_8', 'v_0', 'power', 'v_5', 'v_2', 'v_6', 'v_1', 'v_14'] sns.pairplot(Test_data[columns], size=2, kind='scatter', diag_kind='kde') plt.show() # 数字特征相互之间的关系可视化 sns.set() columns = ['price', 'v_12', 'v_8', 'v_0', 'power', 'v_5', 'v_2', 'v_6', 'v_1', 'v_14'] sns.pairplot(Test_data[columns], size=2, kind='scatter', diag_kind='kde') plt.show()UserWarning: The `size` parameter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)

这段代码使用了Python的数据分析库Seaborn来可视化数据集中数字特征之间的关系。其中,使用了pairplot函数来绘制散点图和概率密度图,参数kind='scatter'表示绘制散点图,diag_kind='kde'表示绘制概率密度图。而警告信息则是由于Seaborn的版本更新,将原来的参数size改为了height。

相关推荐

import numpy as np import tensorflow as tf from SpectralLayer import Spectral mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 flat_train = np.reshape(x_train, [x_train.shape[0], 28*28]) flat_test = np.reshape(x_test, [x_test.shape[0], 28*28]) model = tf.keras.Sequential() model.add(tf.keras.layers.Input(shape=(28*28), dtype='float32')) model.add(Spectral(2000, is_base_trainable=True, is_diag_trainable=True, diag_regularizer='l1', use_bias=False, activation='tanh')) model.add(Spectral(10, is_base_trainable=True, is_diag_trainable=True, use_bias=False, activation='softmax')) opt = tf.keras.optimizers.Adam(learning_rate=0.003) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() epochs = 10 history = model.fit(flat_train, y_train, batch_size=1000, epochs=epochs) print('Evaluating on test set...') testacc = model.evaluate(flat_test, y_test, batch_size=1000) eig_number = model.layers[0].diag.numpy().shape[0] + 10 print('Trim Neurons based on eigenvalue ranking...') cut = [0.0, 0.001, 0.01, 0.1, 1] · for c in cut: zero_out = 0 for z in range(0, len(model.layers) - 1): # put to zero eigenvalues that are below threshold diag_out = model.layers[z].diag.numpy() diag_out[abs(diag_out) < c] = 0 model.layers[z].diag = tf.Variable(diag_out) zero_out = zero_out + np.count_nonzero(diag_out == 0) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy']) testacc = model.evaluate(flat_test, y_test, batch_size=1000, verbose=0) trainacc = model.evaluate(flat_train, y_train, batch_size=1000, verbose=0) print('Test Acc:', testacc[1], 'Train Acc:', trainacc[1], 'Active Neurons:', 2000-zero_out)

select distinct a.EMPI_ID, a.PATIENT_NO, a.MR_NO, a.PAT_NAME, a.PAT_SEX, a.PAT_AGE, a.PAT_PHONE_NO, b.DIAG_RESULT, a.ADMIT_DATE, a.DISCHARGE_DEPT_NAME, a.ATTEND_DR from BASIC_INFORMATION a join PA_DIAG b on a.MZZY_SERIES_NO=b.MZZY_SERIES_NO join EXAM_DESC_RESULT_CODE c on a.MZZY_SERIES_NO=c.MZZY_SERIES_NO join DRUG_INFO d on a.MZZY_SERIES_NO=d.MZZY_SERIES_NO join EMR_CONTENT e on a.MZZY_SERIES_NO=e.MZZY_SERIES_NO JOIN TEST_INFO A17 ON a.MZZY_SERIES_NO = A17.MZZY_SERIES_NO where a.PAT_AGE>='18' and (to_char(a.ADMIT_DATE,'YYYY-MM-DD') >= '2021-01-01') AND (b.DIAG_RESULT LIKE '%鼻咽癌%' or b.DIAG_RESULT LIKE '%鼻咽恶性肿瘤%' or b.DIAG_CODE LIKE '%C11/900%') and d.DRUG_NAME not in (select DRUG_NAME FROM DRUG_INFO WHERE DRUG_NAME like '卡培他滨') and b.DIAG_RESULT NOT IN (SELECT DIAG_RESULT FROM PA_DIAG WHERE DIAG_RESULT LIKE '%HIV阳性%') and b.DIAG_RESULT NOT IN (SELECT DIAG_RESULT FROM PA_DIAG WHERE DIAG_RESULT LIKE '%充血性心力衰竭%') AND to_char(( A17.TEST_DETAIL_ITEM_NAME = '中性粒细胞' AND A17.TEST_RESULT >= 1.5 ) OR ( A17.TEST_DETAIL_ITEM_NAME = '血小板' AND A17.TEST_RESULT >= 100 ) OR ( A17.TEST_DETAIL_ITEM_NAME = '血红蛋白' AND A17.TEST_RESULT >= 9 ) OR ( A17.TEST_DETAIL_ITEM_NAME = '丙氨酸氨基转移酶' AND A17.TEST_RESULT <= 2.5 ) OR ( A17.TEST_DETAIL_ITEM_NAME = '天门冬氨酸氨基转移酶' AND A17.TEST_RESULT <= 2.5 ) OR ( A17.TEST_DETAIL_ITEM_NAME = '肌酐清除率' AND A17.TEST_RESULT > 51 ) OR ( A17.TEST_DETAIL_ITEM_NAME = '肌酐' AND A17.TEST_RESULT <=1.5 ) OR ( A17.TEST_DETAIL_ITEM_NAME = '凝血酶原时间' AND A17.TEST_RESULT <= 1.5 ))语句哪里有问题

最新推荐

recommend-type

在Pycharm中配置集成Git,内附详细文档html+Git-2.46.2-64-bit.exe

资源来自https://gitforwindows.org/;关于如何将git与pycharm连接,可参考https://zhuanlan.zhihu.com/p/660854965
recommend-type

平面口罩打片机_包括零件图_机械3D图可修改打包下载.rar

平面口罩打片机_包括零件图_机械3D图可修改打包下载.rar
recommend-type

基于Android平台的Java老年人健康管理应用设计源码

该应用是一款基于Android平台的Java开发老年人健康管理应用,源代码包含172个文件,其中包括61个Java源文件、56个XML布局文件、40个PNG图像资源、4个Gradle构建脚本、3个Git忽略规则、2个属性文件和少量其他文件类型,旨在为老年人提供便捷的健康管理服务。
recommend-type

技术资料分享FPGA入门系列实验教程V1.0.zip

技术资料分享FPGA入门系列实验教程V1.0.zip
recommend-type

IPQ4019 QSDK开源代码资源包发布

资源摘要信息:"IPQ4019是高通公司针对网络设备推出的一款高性能处理器,它是为需要处理大量网络流量的网络设备设计的,例如无线路由器和网络存储设备。IPQ4019搭载了强大的四核ARM架构处理器,并且集成了一系列网络加速器和硬件加密引擎,确保网络通信的速度和安全性。由于其高性能的硬件配置,IPQ4019经常用于制造高性能的无线路由器和企业级网络设备。 QSDK(Qualcomm Software Development Kit)是高通公司为了支持其IPQ系列芯片(包括IPQ4019)而提供的软件开发套件。QSDK为开发者提供了丰富的软件资源和开发文档,这使得开发者可以更容易地开发出性能优化、功能丰富的网络设备固件和应用软件。QSDK中包含了内核、驱动、协议栈以及用户空间的库文件和示例程序等,开发者可以基于这些资源进行二次开发,以满足不同客户的需求。 开源代码(Open Source Code)是指源代码可以被任何人查看、修改和分发的软件。开源代码通常发布在公共的代码托管平台,如GitHub、GitLab或SourceForge上,它们鼓励社区协作和知识共享。开源软件能够通过集体智慧的力量持续改进,并且为开发者提供了一个测试、验证和改进软件的机会。开源项目也有助于降低成本,因为企业或个人可以直接使用社区中的资源,而不必从头开始构建软件。 U-Boot是一种流行的开源启动加载程序,广泛用于嵌入式设备的引导过程。它支持多种处理器架构,包括ARM、MIPS、x86等,能够初始化硬件设备,建立内存空间的映射,从而加载操作系统。U-Boot通常作为设备启动的第一段代码运行,它为系统提供了灵活的接口以加载操作系统内核和文件系统。 标题中提到的"uci-2015-08-27.1.tar.gz"是一个开源项目的压缩包文件,其中"uci"很可能是指一个具体项目的名称,比如U-Boot的某个版本或者是与U-Boot配置相关的某个工具(U-Boot Config Interface)。日期"2015-08-27.1"表明这是该项目的2015年8月27日的第一次更新版本。".tar.gz"是Linux系统中常用的归档文件格式,用于将多个文件打包并进行压缩,方便下载和分发。" 描述中复述了标题的内容,强调了文件是关于IPQ4019处理器的QSDK资源,且这是一个开源代码包。此处未提供额外信息。 标签"软件/插件"指出了这个资源的性质,即它是一个软件资源,可能包含程序代码、库文件或者其他可以作为软件一部分的插件。 在文件名称列表中,"uci-2015-08-27.1"与标题保持一致,表明这是一个特定版本的软件或代码包。由于实际的文件列表中只提供了这一项,我们无法得知更多的文件信息,但可以推测这是一个单一文件的压缩包。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【PDF表格创建与编辑】:使用Apache PDFBox和iText库制作表格,表格处理不求人

![java 各种pdf处理常用库介绍与使用](https://img-blog.csdnimg.cn/img_convert/6ae15afdef45b1d8fe6d289f0065d18c.png) # 1. PDF表格创建与编辑概述 在当今数字化时代,PDF格式因其可移植性和可维护性成为了电子文档的首选。在诸多应用场景中,表格作为一种重要的信息传递工具,其创建与编辑的需求日益增长。本章节将为读者提供一个关于PDF表格创建与编辑的概述,为后续章节中使用Apache PDFBox和iText库进行深入探讨奠定基础。 ## 1.1 PDF表格的作用与重要性 PDF表格在商务沟通、数据分析
recommend-type

python输出txt文件

在Python中,你可以使用内置的`open()`函数来创建和写入TXT文件。下面是一个简单的例子: ```python # 打开文件(如果不存在则创建) with open('example.txt', 'w') as file: # 写入文本内容 file.write('这是你要写入的内容') # 如果你想追加内容而不是覆盖原有文件 # 使用 'a' 模式(append) # with open('example.txt', 'a') as file: # file.write('\n这是追加的内容') # 关闭文件时会自动调用 `close()` 方法,但使
recommend-type

高频组电赛必备:掌握数字频率合成模块要点

资源摘要信息:"2022年电赛 高频组必备模块 数字频率合成模块" 数字频率合成(DDS,Direct Digital Synthesis)技术是现代电子工程中的一种关键技术,它允许通过数字方式直接生成频率可调的模拟信号。本模块是高频组电赛参赛者必备的组件之一,对于参赛者而言,理解并掌握其工作原理及应用是至关重要的。 本数字频率合成模块具有以下几个关键性能参数: 1. 供电电压:模块支持±5V和±12V两种供电模式,这为用户提供了灵活的供电选择。 2. 外部晶振:模块自带两路输出频率为125MHz的外部晶振,为频率合成提供了高稳定性的基准时钟。 3. 输出信号:模块能够输出两路频率可调的正弦波信号。其中,至少有一路信号的幅度可以编程控制,这为信号的调整和应用提供了更大的灵活性。 4. 频率分辨率:模块提供的频率分辨率为0.0291Hz,这样的精度意味着可以实现非常精细的频率调节,以满足高频应用中的严格要求。 5. 频率计算公式:模块输出的正弦波信号频率表达式为 fout=(K/2^32)×CLKIN,其中K为设置的频率控制字,CLKIN是外部晶振的频率。这一计算方式表明了频率输出是通过编程控制的频率控制字来设定,从而实现高精度的频率合成。 在高频组电赛中,参赛者不仅需要了解数字频率合成模块的基本特性,还应该能够将这一模块与其他模块如移相网络模块、调幅调频模块、AD9854模块和宽带放大器模块等结合,以构建出性能更优的高频信号处理系统。 例如,移相网络模块可以实现对信号相位的精确控制,调幅调频模块则能够对信号的幅度和频率进行调整。AD9854模块是一种高性能的DDS芯片,可以用于生成复杂的波形。而宽带放大器模块则能够提供足够的增益和带宽,以保证信号在高频传输中的稳定性和强度。 在实际应用中,电赛参赛者需要根据项目的具体要求来选择合适的模块组合,并进行硬件的搭建与软件的编程。对于数字频率合成模块而言,还需要编写相应的控制代码以实现对K值的设定,进而调节输出信号的频率。 交流与讨论在电赛准备过程中是非常重要的。与队友、指导老师以及来自同一领域的其他参赛者进行交流,不仅可以帮助解决技术难题,还可以相互启发,激发出更多创新的想法和解决方案。 总而言之,对于高频组的电赛参赛者来说,数字频率合成模块是核心组件之一。通过深入了解和应用该模块的特性,结合其他模块的协同工作,参赛者将能够构建出性能卓越的高频信号处理设备,从而在比赛中取得优异成绩。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依