diag = np.array(sumArr.flatten())[0] + 1e-7 # 计算次方,这里是求diag开方的倒数 diag = np.power(diag, -0.5) # 对矩阵进行对角化 D = sp.diags(diag) L = D * A * D # covert norm_adj matrix to tensor L = sp.coo_matrix(L) row = L.row col = L.col i = torch.LongTensor(np.array([row, col])) data = torch.FloatTensor(L.data)是什么意思,解释没一句的意思及其含义
时间: 2024-04-27 10:21:10 浏览: 130
这段代码是用于将一个稀疏对称矩阵A转换为对角线为1的矩阵L。具体解释如下:
1. `sumArr`是一个二维数组,用`flatten()`将其展开成一维数组,再用`np.array()`将其转换为numpy数组;
2. `diag`用于计算对角线元素的值,即将一维数组的每个元素加上一个很小的数(这里是1e-7),然后取其开方的倒数;
3. `D`是一个对角矩阵,其对角线元素为`diag`;
4. `L`是经过对角化后的矩阵,其计算公式为$L=D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$;
5. `sp.coo_matrix()`将稀疏矩阵转换为COO(Coordinate list)格式的稀疏矩阵;
6. `row`和`col`分别是稀疏矩阵L中非零元素的行和列;
7. `i`是一个大小为2xN的LongTensor,其中N是非零元素的个数,`i[0]`和`i[1]`分别对应非零元素的行和列;
8. `data`是一个大小为N的FloatTensor,表示非零元素的值。
最终,`i`和`data`被用于构建一个稀疏张量。
相关问题
def SubOptFun(CurrX, TruRegRad, GradVect, HessMat): """ :param CurrX: :param TruRegRad: :param GradVect: :param HessMat: :return: """ CurrX = np.array(CurrX) n = len(CurrX) EigVal, EigVect = np.linalg.eig(HessMat) EigValIndex = np.argsort(EigVal) # 排序,找最小特征值 EigVect = EigVect[:,EigValIndex] # 找到,特征值对应的特征向量 if np.min(EigVal) >= 1e-6 : NewtonSolution = (-1) * EigVect @ np.diag(EigVal ** (-1) ) @ EigVect.T @ GradVect NormD = np.linalg.norm(NewtonSolution) if NormD <= TruRegRad: XStar = CurrX + NewtonSolution return XStar else : InitLambda = 0 else : InitLambda = (-1) * np.min(EigVal) + 1e-6 IterStep = 1.0 IterLambda = InitLambda + IterStep while True : NewtonSolution = (-1) * EigVect @ np.diag((IterLambda + EigVal) ** (-1) ) @ EigVect.T @ GradVect NormD = np.linalg.norm(NewtonSolution) if NormD >= TruRegRad + 1e-6: InitLambda = IterLambda IterStep = 2 * IterStep IterLambda = InitLambda + IterStep elif NormD <= TruRegRad - 1e-6: EndLambda = IterLambda break else: XStar = CurrX + NewtonSolution return XStar while True : IterLambda = 0.5 * (InitLambda + EndLambda) NewtonSolution = (-1) * EigVect @ np.diag((IterLambda + EigVal) ** (-1) ) @ EigVect.T @ GradVect NormD = np.linalg.norm(NewtonSolution) if NormD >= TruRegRad + 1e-6: InitLambda = IterLambda elif NormD <= TruRegRad - 1e-6: EndLambda = IterLambda else: XStar = CurrX + NewtonSolution return XStar
这段代码是一个实现子优函数的函数,用于求解无约束优化问题的近似解。其中,参数CurrX是当前的优化变量,TruRegRad是真实约束半径,GradVect是梯度向量,HessMat是黑塞矩阵。该函数首先计算黑塞矩阵的特征值和特征向量,并通过排序找到最小特征值对应的特征向量。如果最小特征值大于等于一个很小的值,则使用牛顿法求解无约束优化问题的近似解,否则通过二分法找到满足真实约束半径的最小特征值。最后,通过牛顿法求解无约束优化问题的近似解并返回。
翻译代码import numpy as np from cvxopt import matrix, solvers solvers.options['show_progress'] = False # 市场出清,考虑网络阻塞 def market_clearing(alpha): # 供给曲线的截距和斜率 a_real = np.array([15.0, 18.0]) b_real = np.array([0.01, 0.008]) # 需求曲线的截距和斜率 c_real = np.array([40.0, 40.0]) * -1 d_real = np.array([0.08, 0.06]) # 机组功率上下限 p_min = np.array([0.0, 0.0]) p_max = np.array([500.0, 500.0]) # 负荷需求上下限 q_min = np.zeros(2) q_max = np.array([500.0, 666.666666666667]) J_g = ([[-0.333333333333333, -0.333333333333333, -0.666666666666667], [0.333333333333334, -0.666666666666667, -0.333333333333333], [0, 0, 0]]) J = np.array([[-0.333333333333333, 0.0, 0.333333333333333, -0.333333333333334], [-0.333333333333333, 0.0, 0.333333333333333, 0.666666666666667], [-0.666666666666667, 0.0, 0.666666666666667, 0.333333333333333]]) J_max = np.array([25.0, 1000.0, 1000.0, 25.0, 1000.0, 1000.0]) P = matrix(np.diag(np.append(b_real, d_real))) q = matrix(np.append(alpha, c_real)) G = matrix(np.vstack((J, -J, np.diag(-np.ones(4)), np.diag(np.ones(4))))) h = matrix(np.hstack((J_max, -p_min, -q_min, p_max, q_max))) A = matrix(np.hstack((-np.ones(2), np.ones(2)))).T b = matrix(0.0) sv = solvers.qp(P, q, G, h, A, b) miu1 = sv['z'][0:3] miu2 = sv['z'][3:6] nodal_price = (np.ones((3, 1)) * sv['y'][0] - np.dot(J_g, miu1 - miu2)).squeeze() nodal_price_g = np.array([nodal_price[0], nodal_price[2]]) mc_amount = np.array(sv['x'][:2]).squeeze() cost_real = 0.5 * b_real * mc_amount ** 2 + a_real * mc_amount cost_declare = mc_amount * np.transpose(nodal_price_g) profit = cost_declare - cost_real return nodal_price_g, profit if __name__ == '__main__': alpha = np.array([20.29, 22.98]) print(market_clearing(alpha))
这段代码实现了一个市场出清的过程,用于计算电力市场中的供需关系和市场价格。具体来说,代码中有以下几个重要的变量和参数:
- a_real和b_real:表示供给曲线的截距和斜率,是一个长度为2的数组。
- c_real和d_real:表示需求曲线的截距和斜率,同样是一个长度为2的数组。
- p_min和p_max:表示机组功率的上下限,也是一个长度为2的数组。
- q_min和q_max:表示负荷需求的上下限,同样是一个长度为2的数组。
- J_g、J和J_max:都是用于计算市场价格的矩阵或数组。
- alpha:是一个长度为2的数组,表示供给和需求量的差异。
代码中使用了cvxopt库中的qp函数,通过定义P、q、G、h、A和b等矩阵,来求解最优化问题,得到了供给量和需求量的均衡点。最后,通过计算市场价格和成本等,得到了节点价格和利润的结果,并将其返回。
在主函数中,代码对market_clearing函数进行了测试,并输出了结果。
阅读全文