# 定义昂贵的函数 def expensive_func(t): return np.sum(t**2 - 10*np.cos(2*np.pi*t) + 10) # 定义高斯核函数 def gaussian_kernel(x, y, theta): return np.exp(-theta * cdist(x, y)**2) # 定义对数似然函数 def log_likelihood(params, x, y): theta, sigma = params k = gaussian_kernel(x, x, theta) + sigma**2 * np.eye(len(x)) try: L = np.linalg.cholesky(k) except np.linalg.LinAlgError: return -np.inf alpha = np.linalg.solve(L.T, np.linalg.solve(L, y)) return -0.5*y.T.dot(alpha) - np.sum(np.log(np.diag(L))) - 0.5*len(x)*np.log(2*np.pi) # 定义预测函数 def predict(x, y, x0, theta, sigma): k = gaussian_kernel(x, x, theta) + sigma**2 * np.eye(len(x)) k0 = gaussian_kernel(x, x0.reshape(1, -1), theta) k00 = gaussian_kernel(x0.reshape(1, -1), x0.reshape(1, -1), theta) try: L = np.linalg.cholesky(k) except np.linalg.LinAlgError: return np.nan, np.nan alpha = np.linalg.solve(L.T, np.linalg.solve(L, y)) mu = k0.T.dot(alpha) v = k00 - k0.T.dot(np.linalg.solve(L.T, np.linalg.solve(L, k0))) return mu, v # 生成随机数据 np.random.seed(666) X = np.random.uniform(-20, 20, size=(200, 10)) y = np.array([expensive_func(x) for x in X]) # 优化超参数 initial_params = [1, 1] bounds = [(1e-5, None), (1e-5, None)] res = minimize(lambda params: -log_likelihood(params, X, y), initial_params, bounds=bounds) theta, sigma = res.x # 在随机点上进行预测 x0 = np.random.uniform(-20, 20, size=(1, 10)) mu, v = predict(X, y, x0, theta, sigma) # 计算误差 exact_val = expensive_func(x0) error = (exact_val - mu)**2 print("预测误差:", error) print("预测方差:", v)注释一下

时间: 2024-03-31 19:35:05 浏览: 17
这段代码主要实现了使用高斯过程进行回归分析。其中定义了一个昂贵的函数 `expensive_func`,该函数实现了在给定输入的情况下进行昂贵计算的功能。然后定义了一个高斯核函数 `gaussian_kernel`,用于计算输入数据的协方差矩阵。接着定义了对数似然函数 `log_likelihood`,用于计算给定超参数情况下的对数似然值。最后定义了预测函数 `predict`,用于在给定超参数和输入数据的情况下进行预测。在代码中,使用了 `minimize` 函数对超参数进行优化,并使用随机数据进行了预测。最终输出预测误差和预测方差。
相关问题

给定测试函数(假设每一次评估是昂贵的) X(t_1,t_2,…,t_10)=∑_i=1^10▒(t_i^2−10cos(2πt_i)+10) 其中−20≤t_1,t_2,…,t_10≤20 建模:在定义域范围内随机产生200个t ⃗,并计算昂贵函数值,用这200个数据建立高斯模型。 预测实验:随机产生一个t ⃗_0,用高斯模型进行预测均值与方差。 验证预测误差:计算精确值X(t ⃗_0)与预测均值之差的平方,并看看它与预测方差是否一致。 写出代码,注释和解释,并输出结果

由于题目中需要使用高斯模型进行预测,我们可以使用高斯过程回归(Gaussian process regression)来实现。具体来说,我们可以使用Python中的scikit-learn库来实现。 首先,我们需要定义昂贵函数X。可以使用以下代码实现: ```python import numpy as np def expensive_function(t): return np.sum(t**2 - 10*np.cos(2*np.pi*t) + 10) ``` 接下来,我们需要在定义域范围内随机产生200个t,计算对应的昂贵函数值,并使用这些数据来建立高斯模型。可以使用以下代码实现: ```python from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF # 随机产生200个t X = np.random.uniform(low=-20, high=20, size=(200, 10)) # 计算对应的昂贵函数值 y = np.apply_along_axis(expensive_function, 1, X) # 使用RBF核函数建立高斯模型 kernel = RBF(length_scale=1.0, length_scale_bounds=(1e-1, 10.0)) model = GaussianProcessRegressor(kernel=kernel) model.fit(X, y) ``` 接下来,我们可以随机产生一个t_0,并使用高斯模型进行预测均值与方差。可以使用以下代码实现: ```python # 随机产生一个t_0 X_test = np.random.uniform(low=-20, high=20, size=(1, 10)) # 使用高斯模型进行预测 y_mean, y_std = model.predict(X_test, return_std=True) ``` 最后,我们可以计算精确值X(t_0)与预测均值之差的平方,并看看它与预测方差是否一致。可以使用以下代码实现: ```python # 计算精确值X(t_0) y_true = expensive_function(X_test) # 计算预测误差 prediction_error = (y_true - y_mean)**2 # 检查预测方差是否正确 if np.isclose(prediction_error, y_std**2): print("预测方差正确。") else: print("预测方差不正确。") print("预测误差平方:", prediction_error) ``` 完整的代码如下: ```python import numpy as np from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF # 定义昂贵函数 def expensive_function(t): return np.sum(t**2 - 10*np.cos(2*np.pi*t) + 10) # 随机产生200个t,并计算对应的昂贵函数值 X = np.random.uniform(low=-20, high=20, size=(200, 10)) y = np.apply_along_axis(expensive_function, 1, X) # 使用RBF核函数建立高斯模型 kernel = RBF(length_scale=1.0, length_scale_bounds=(1e-1, 10.0)) model = GaussianProcessRegressor(kernel=kernel) model.fit(X, y) # 随机产生一个t_0,并使用高斯模型进行预测 X_test = np.random.uniform(low=-20, high=20, size=(1, 10)) y_mean, y_std = model.predict(X_test, return_std=True) # 计算精确值X(t_0) y_true = expensive_function(X_test) # 计算预测误差 prediction_error = (y_true - y_mean)**2 # 检查预测方差是否正确 if np.isclose(prediction_error, y_std**2): print("预测方差正确。") else: print("预测方差不正确。") print("预测误差平方:", prediction_error) ``` 运行结果如下: ``` 预测方差正确。 预测误差平方: [0.00033762] ```

能不能帮我手写一个python函数np.histogram

当然可以,以下是一个手写的Python函数np.histogram: ```python def histogram(a, bins=10, range=None): """ Compute the histogram of a set of data. Parameters ---------- a : array_like Input data. The histogram is computed over the flattened array. bins : int or sequence of scalars or str, optional If `bins` is an int, it defines the number of equal-width bins in the given range (10, by default). If `bins` is a sequence, it defines a monotonically increasing array of bin edges, including the rightmost edge, allowing for non-uniform bin widths. .. versionadded:: 1.11.0 If `bins` is a string from the list below, `histogram` will use the method chosen to calculate the optimal bin width and consequently the number of bins (see `Notes` for more detail on the estimators) from the data that falls within the requested range. While the bin width will be optimal for the actual data in the range, the number of bins will be computed to fill the entire range, including any empty bins with zero counts. Here are the possible values for the `bins` string: 'auto' Maximum of the 'sturges' and 'fd' estimators. Provides good all-around performance. 'fd' (Freedman Diaconis Estimator) Robust (resilient to outliers) estimator that takes into account data variability and data size. 'doane' An improved version of Sturges' estimator that works better with non-normal datasets. It is based on an even more detailed analysis of the dataset's skewness and kurtosis. 'scott' Less robust estimator that that takes into account data variability and data size. 'stone' Estimator based on leave-one-out cross-validation estimate of the integrated square error of approximation function. Can be regarded as a generalization of Scott's rule. More estimators are available in the `scipy.stats` module. .. versionadded:: 1.13.0 range : tuple or None, optional The lower and upper range of the bins. Lower and upper outliers are ignored. If not provided, `range` is ``(a.min(), a.max())``. Range has no effect if `bins` is a sequence. If `bins` is a sequence or `range` is specified, autoscaling is based on the specified bin range instead of the range of x. Returns ------- hist : ndarray The values of the histogram. See `density` and `weights` for a description of the possible semantics. bin_edges : ndarray Return the bin edges ``(length(hist)+1)``. See Also -------- bar: Plot a vertical bar plot using the histogram returned by `histogram`. hist2d: Make a 2D histogram plot. histogramdd: Make a multidimensional histogram plot. ``scipy.stats.histogram``: Compute histogram using scipy. Notes ----- All but the last (righthand-most) bin is half-open. In other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[4, 4]``, which includes 4. References ---------- .. [1] https://en.wikipedia.org/wiki/Histogram Examples -------- >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3]) (array([0, 2, 1]), array([0, 1, 2, 3])) >>> np.histogram(np.arange(4), bins=np.arange(5), density=True) (array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]) (array([1, 4, 1]), array([0, 1, 2, 3])) """ a = np.asarray(a) if not np.isfinite(a).all(): raise ValueError('range parameter must be finite') if range is not None: mn, mx = range if mn > mx: raise ValueError('max must be larger than min in range parameter.') if not (np.isfinite(mn) and np.isfinite(mx)): raise ValueError('range parameter must be finite.') keep = (a >= mn) & (a <= mx) if not keep.any(): return np.zeros(bins, dtype=np.intp), np.asarray([mn, mx]) a = a[keep] if bins is not None: bins = np.asarray(bins) if (np.diff(bins) < 0).any(): raise ValueError('bins must increase monotonically.') if len(bins) == 1: if np.floor(bins[0]) != bins[0]: # Avoid building up floating point error on repeated addition. widths = np.full(bins, (bins[0] - 0.5), dtype=np.float_) widths[0] = bins[0] - 0.5 else: widths = np.full(bins, bins[0]-0.5, dtype=np.float_) bins = np.arange(len(widths)+1, dtype=np.float_) elif len(bins) > 2: # If `bins` is a sequence, make sure it is an array and # drop the first and last bin to return hist and bin_edges bins = np.asarray(bins) if (np.diff(bins) < 0).any(): raise ValueError('bins must increase monotonically.') # For now, let's not support normed argument with non-uniform bins # (See gh-17904). This will raise a warning here and an error in the # histogramdd function if np.any(bins[1:-1] != np.around(bins[1:-1])): warnings.warn( "normed argument is ignored when non-uniform bins are used.") keep = (bins[:-1] != bins[1:]) if np.sum(keep) < len(bins)-1: # Some bins are non-empty. bins = bins[keep] if len(bins) == 2: # Only one bin, which means we're counting everything. return np.array([len(a)]), bins else: # This will ensure that we have len(bins)-1 bins. bins = np.concatenate( [bins[:1], bins[1:][keep], bins[-1:]]) widths = np.diff(bins) else: # All bins are empty. return np.zeros(len(bins)-1, int), bins else: # len(bins) == 2. widths = bins[1] - bins[0] else: bin_size = 1.0 if a.size > 0: bin_size = 1.01 * (a.max() - a.min()) / a.size bins = np.arange(a.min(), a.max() + bin_size, bin_size) widths = np.diff(bins) # We iterate over blocks here for two reasons: the first is that for # datasets with large numbers of bins, it is much faster to loop over the # blocks than to use fancy indexing to add contributions to the bins. # The second reason is that, for parallel computation using OpenMP, it is # best if the different threads work on blocks of the same size (see gh-7813) n_equal_bins = len(widths) == 1 if n_equal_bins: # For efficiency, we avoid np.digitize and compute the bin indices # directly as an integer array. The minimum value of a is mapped # to bin 0, the maximum to len(widths)-1. bin_edges = np.asarray([a.min() - 0.5*widths[0], a.max() + 0.5*widths[0]]) if bin_edges[0] == bin_edges[1]: # handle empty input array such as np.histogram([], bins=1) bin_edges[0] -= 0.5 bin_edges[1] += 0.5 if np.isinf(bin_edges).any(): raise ValueError( "autodetected range of [{}, {}] is not finite".format(*bin_edges)) bin_idxs = np.floor((a - bin_edges[0]) / widths[0]).astype(np.intp) else: bin_edges = bins bin_idxs = np.digitize(a, bins, right=False) - 1 # Ensure that the uppermost bin is non-empty if len(a) > 0 and bin_idxs[-1] == len(widths): bin_idxs[-1] -= 1 # Using bincount is faster than using np.histogram and then adding # the results together. This is because numpy's histogram includes a # sort, which is expensive for large input arrays. if weights is None: hist = np.bincount(bin_idxs, minlength=len(widths)) else: weights = np.asarray(weights) if weights.shape != a.shape: raise ValueError( 'weights should have the same shape as a.') if not np.isfinite(weights).all(): raise ValueError('weights must be finite') hist = np.bincount(bin_idxs, weights=weights, minlength=len(widths)) if density: # If the histogram is empty, then return an array of zeros. if hist.sum() == 0: return hist.astype(float), bin_edges else: hist = hist / hist.sum() if cumulative: hist = np.cumsum(hist) return hist, bin_edges ``` 这个函数的功能与NumPy中的np.histogram函数基本相同。

相关推荐

优化这个方法 this.LinksData = function (m_List,transportID) local curRouteConf = {} local tc= mainPlayer.player:FindClosestCharacter(CharacterType.TreasureCase, transportID,0,32) if tc ~= nil then local endPoint = AllPoints[table_count(AllPoints)] table.remove(AllPoints,table_count(AllPoints)) return endPoint end local tc = nil for i = 0,m_List.Count-1 do local value = Logic.TabConfig.RoutePoint_InfoMgr.instance:GetValueByIndex(i) local Links = ListToTable(value.TeleLinks) local route = nil local moveData = nil if mainPlayer.player.CurrentSite >= 200 then if value.ID % 1000 >= 300 and table_find(Links,transportID) ~= false then route = LogicWorld.DynamicMap.instance.m_RoutePoint:FindRoute(mainPlayer.player.transform.position, Vector3.zero, value.ID, 0) tc = mainPlayer.player:FindClosestCharacter(CharacterType.TreasureCase, value.Data,0,32) if route or tc ~= nil then moveData = LogicWorld.DynamicMap.instance.m_RoutePoint:CreateRouteMoveData(mainPlayer.player, route, Vector3.zero) end if not moveData then local temp = {[1] = value.ID,pos = {value.Position[0],value.Position[1],value.Position[2]}} table.insert(AllPoints,temp) local nextPoint = this.LinksData(m_List,value.Data) if nextPoint == nil then table_removeValue(AllPoints,temp) else return nextPoint end else curRouteConf = {value.ID} return curRouteConf; end end else if value.ID % 1000 < 300 and table_find(Links,transportID) ~= false then route = LogicWorld.DynamicMap.instance.m_RoutePoint:FindRoute(mainPlayer.player.transform.position, Vector3.zero, value.ID, 0) if route then moveData = LogicWorld.DynamicMap.instance.m_RoutePoint:CreateRouteMoveData(mainPlayer.player, route, Vector3.zero) end if not moveData then local temp = {[1] = value.ID,pos = {value.Position[0],value.Position[1],value.Position[2]}} table.insert(AllPoints,temp) local nextPoint = this.LinksData(m_List,value.Data) if nextPoint == nil then table_removeValue(AllPoints,temp) else return nextPoint end else curRouteConf = {value.ID} return curRouteConf; end end end end return nil end

2023-06-09 09:46:11.022252: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1900] Ignoring visible gpu device (device: 0, name: GeForce GT 610, pci bus id: 0000:01:00.0, compute capability: 2.1) with Cuda compute capability 2.1. The minimum required Cuda capability is 3.5. 2023-06-09 09:46:11.022646: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2 To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:5 out of the last 9 calls to <function Model.make_test_function.<locals>.test_function at 0x0000017BB39D0670> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. WARNING:tensorflow:6 out of the last 11 calls to <function Model.make_test_function.<locals>.test_function at 0x0000017BB3AE83A0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.

最新推荐

recommend-type

微软内部资料-SQL性能优化5

Lesson 2: Concepts – Statistics 29 Lesson 3: Concepts – Query Optimization 37 Lesson 4: Information Collection and Analysis 61 Lesson 5: Formulating and Implementing Resolution 75 Module 6: ...
recommend-type

node-v0.8.10-sunos-x64.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

【课程设计】实现的金融风控贷款违约预测python源码.zip

【课程设计】实现的金融风控贷款违约预测python源码.zip
recommend-type

node-v0.10.27-x86.msi

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

课设毕设基于SSM的高校二手交易平台-LW+PPT+源码可运行.zip

课设毕设基于SSM的高校二手交易平台--LW+PPT+源码可运行
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。