def load_dict(dict_name): if os.path.isfile(os.path.join('../data/DICT', dict_name)): with open(os.path.join('..data/DICT', dict_name)) as f: tmp_dict = json.load(f) res_count_dict = {} for i in range(20): res_count_dict[1] = tmp_dict[str(i)] else: print ("dictionary not exist! initializing an empty one ..") res_count_dict = {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0, 10: 0, 11: 0, 12: 0, 13: 0, 14: 0,15: 0, 16: 0, 17: 0, 18: 0, 19: 0} for key in res_count_dict: print (label_res_dict[(key)] + " " + str(res_count_dict[key])) return res_count_dict

时间: 2023-04-04 10:02:07 浏览: 86
这是一个 Python 函数,用于加载一个字典文件。如果字典文件存在,则读取文件内容并返回一个字典对象,否则返回一个空字典。函数的参数是字典文件的名称,函数会在指定路径下查找字典文件。如果找到了字典文件,则将文件内容解析为一个 JSON 对象,并将其中的数据存储到一个新的字典对象中。这个新的字典对象包含了 20 个键值对,每个键对应一个数字,表示该数字在字典中出现的次数。如果字典文件不存在,则会输出一条错误信息,并返回一个空字典对象。
相关问题

VGG_MEAN = [103.939, 116.779, 123.68] class Vgg19: def __init__(self, vgg19_npy_path=None): if vgg19_npy_path is None: path = inspect.getfile(Vgg19) path = os.path.abspath(os.path.join(path, os.pardir)) path = os.path.join(path, "vgg19.npy") vgg19_npy_path = path print(vgg19_npy_path) self.data_dict = np.load(vgg19_npy_path, encoding='latin1').item() print("npy file loaded")

这段代码进一步完善了之前定义的Vgg19类,其中np.load()函数用于载入预先训练好的VGG19模型的参数,encoding='latin1'参数用于指定读取文件时使用的编码方式。该函数返回一个字典类型的对象,包含了VGG19模型中所有层的权重和偏置等参数。这些参数被存储在self.data_dict变量中,并在载入完成后打印了一条提示信息。

def __getitem__(self, idx): file = self.tiles[idx] data_dict = np.load(file) data = [torch.from_numpy(data_dict[p]) for p in self.parts] if self.transform is not None: data = self.transform(data) return data def __len__(self): return len(self.tiles)是什么意思

这段代码定义了一个类的 `__getitem__` 和 `__len__` 方法,用于实现索引和获取数据集长度的功能。以下是对代码的解释: `__getitem__(self, idx)` 方法: - 接收一个索引 `idx` 作为参数。 - 从 `self.tiles` 列表中获取索引为 `idx` 的文件路径。 - 使用 `np.load(file)` 加载 `.npz` 文件并将数据存储到 `data_dict` 字典中。 - 使用列表推导式将 `data_dict` 中的数据转换为 `torch.Tensor` 对象,并存储在列表 `data` 中。 - 如果定义了数据的转换函数 `self.transform`,则调用 `self.transform(data)` 对数据进行转换。 - 返回转换后的数据。 `__len__(self)` 方法: - 返回 `self.tiles` 列表的长度,即数据集的长度。 这段代码实现了数据集类的索引功能和获取数据集长度的功能。通过 `__getitem__` 方法可以通过索引来获取对应的数据,并且支持对数据进行转换。`__len__` 方法返回了数据集的长度,便于迭代和训练过程中的批处理操作。
阅读全文

相关推荐

import os from PyQt5.QtCore import Qt from PyQt5.QtGui import QPixmap, QIcon from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QVBoxLayout, QHBoxLayout, QTreeView, QFileSystemModel class ImageViewer(QWidget): def init(self, folder_path): super().init() self.folder_path = folder_path self.image_dict = {} self.current_image = None self.setWindowTitle("Image Viewer") self.setFixedSize(1000, 600) self.image_label = QLabel(self) self.image_label.setAlignment(Qt.AlignCenter) self.tree_view = QTreeView() self.tree_view.setMinimumWidth(250) self.tree_view.setMaximumWidth(250) self.model = QFileSystemModel() self.model.setRootPath(folder_path) self.tree_view.setModel(self.model) self.tree_view.setRootIndex(self.model.index(folder_path)) self.tree_view.setHeaderHidden(True) self.tree_view.setColumnHidden(1, True) self.tree_view.setColumnHidden(2, True) self.tree_view.setColumnHidden(3, True) self.tree_view.doubleClicked.connect(self.tree_item_double_clicked) self.main_layout = QHBoxLayout(self) self.main_layout.addWidget(self.tree_view) self.main_layout.addWidget(self.image_label) self.load_images() self.update_image() def load_images(self): for file_name in os.listdir(self.folder_path): if file_name.lower().endswith((".jpg", ".jpeg", ".png", ".gif", ".bmp")): file_path = os.path.join(self.folder_path, file_name) self.image_dict[file_name] = file_path current_image = list(self.image_dict.keys())[0] def update_image(self): if self.current_image is not None: pixmap = QPixmap(self.image_dict[self.current_image]) self.image_label.setPixmap(pixmap.scaled(self.width() - self.tree_view.width(), self.height(), Qt.KeepAspectRatio, Qt.SmoothTransformation)) def tree_item_double_clicked(self, index): file_name = self.model.fileName(index) if file_name in self.image_dict: self.current_image = file_name self.update_image() def keyPressEvent(self, event): if event.key() == Qt.Key_A: self.previous_image() elif event.key() == Qt.Key_D: self.next_image() elif event.key() in [Qt.Key_1, Qt.Key_2, Qt.Key_3, Qt.Key_4, Qt.Key_5]: self.save_text_file(event.key() - Qt.Key_0) def previous_image(self): if self.current_image is not None: file_names = list(self.image_dict.keys()) current_index = file_names.index(self.current_image) if current_index > 0: self.current_image = file_names[current_index - 1] else: self.current_image = file_names[-1] self.update_image() def next_image(self): if self.current_image is not None: file_names = list(self.image_dict.keys()) current_index = file_names.index(self.current_image) if current_index < len(file_names) - 1: self.current_image = file_names[current_index + 1] else: self.current_image = file_names[0] self.update_image() def save_text_file(self, number): if self.current_image is not None: file_name = self.current_image txt_file_path = os.path.join(self.folder_path, os.path.splitext(file_name)[0] + ".txt") with open(txt_file_path, "w") as file: file.write(str(number)) if name == "main": import sys app = QApplication(sys.argv) viewer = ImageViewer("D:/图片/wallpaper") viewer.show() sys.exit(app.exec_())这份代码实现不了使用键盘的A键向上翻页以及D键向下翻页,也实现不了键盘数字键生成相应txt文档,帮我分析一下错在哪里

import os import json import torch from PIL import Image from torchvision import transforms from model import resnet34 def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data_transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image # 指向需要遍历预测的图像文件夹 imgs_root = "../dataset/val" assert os.path.exists(imgs_root), f"file: '{imgs_root}' dose not exist." # 读取指定文件夹下所有jpg图像路径 img_path_list = [os.path.join(imgs_root, i) for i in os.listdir(imgs_root) if i.endswith(".jpg")] # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), f"file: '{json_path}' dose not exist." json_file = open(json_path, "r") class_indict = json.load(json_file) # create model model = resnet34(num_classes=16).to(device) # load model weights weights_path = "./newresNet34.pth" assert os.path.exists(weights_path), f"file: '{weights_path}' dose not exist." model.load_state_dict(torch.load(weights_path, map_location=device)) # prediction model.eval() batch_size = 8 # 每次预测时将多少张图片打包成一个batch with torch.no_grad(): for ids in range(0, len(img_path_list) // batch_size): img_list = [] for img_path in img_path_list[ids * batch_size: (ids + 1) * batch_size]: assert os.path.exists(img_path), f"file: '{img_path}' dose not exist." img = Image.open(img_path) img = data_transform(img) img_list.append(img) # batch img # 将img_list列表中的所有图像打包成一个batch batch_img = torch.stack(img_list, dim=0) # predict class output = model(batch_img.to(device)).cpu() predict = torch.softmax(output, dim=1) probs, classes = torch.max(predict, dim=1) for idx, (pro, cla) in enumerate(zip(probs, classes)): print("image: {} class: {} prob: {:.3}".format(img_path_list[ids * batch_size + idx], class_indict[str(cla.numpy())], pro.numpy())) if __name__ == '__main__': main()

把下面的格式改成代码形式,并每行进行一局注释#!/usr/bin/env python # -*- coding: utf-8 -*- import time def read_file(file_path): test_file = open(file_path, "r") test_words = test_file.read() test_file.close() return test_words def save_result(result, file_path): output_file = open(file_path, "w") output_file.write(result) print("Save completed") def count_word(input_str): count_words = input_str.split() count_dict = {} for word in count_words: word = word.lower() if word not in count_dict.keys(): count_dict[word] = 1 else: count_dict[word] += 1 return count_dict def get_min(count_dict): min_count = min(count_dict.values()) min_words = [] for word, count in count_dict.items(): if count == min_count: min_words.append(word) return min_words, min_count def get_localtime(): localtime = time.localtime() return time.strftime("%H:%M:%S", localtime) def convert2str(*args): output_str = "The words and corresponding times:\n" for arg in args: try: if type(arg) == list: tmp_str = " ".join(arg) output_str += tmp_str elif type(arg) == int or type(arg) == str: output_str += " : " output_str += str(arg) except: print("Error, unknown type:", type(arg)) return output_str if __name__ == '__main__': test_words = read_file("test_words.txt") count_result = count_word(test_words) min_words, min_count = get_min(count_result) print("check_time:", get_localtime()) print("check_result:", min_words, min_count) output_str = convert2str(min_words, min_count) save_result(output_str, "test_word_result.txt")

coding=UTF-8 from flask import Flask, render_template, request, send_from_directory from werkzeug.utils import secure_filename from iconflow.model.colorizer import ReferenceBasedColorizer from skimage.feature import canny as get_canny_feature from torchvision import transforms from PIL import Image import os import datetime import torchvision import cv2 import numpy as np import torch import einops transform_Normalize = torchvision.transforms.Compose([ transforms.Normalize(0.5, 1.0)]) ALLOWED_EXTENSIONS = set([‘png’, ‘jpg’, ‘jpeg’]) app = Flask(name) train_model = ReferenceBasedColorizer() basepath = os.path.join( os.path.dirname(file), ‘images’) # 当前文件所在路径 def allowed_file(filename): return ‘.’ in filename and filename.rsplit(‘.’, 1)[1] in ALLOWED_EXTENSIONS def load_model(log_path=‘/mnt/4T/lzq/IconFlowPaper/checkpoints/normal_model.pt’): global train_model state = torch.load(log_path) train_model.load_state_dict(state[‘net’]) @app.route(“/”, methods=[“GET”, “POST”]) def hello(): if request.method == ‘GET’: return render_template(‘upload.html’) @app.route(‘/upload’, methods=[“GET”, “POST”]) def upload_lnk(): if request.method == ‘GET’: return render_template(‘upload.html’) if request.method == ‘POST’: try: file = request.files['uploadimg'] except Exception: return None if file and allowed_file(file.filename): format = "%Y-%m-%dT%H:%M:%S" now = datetime.datetime.utcnow().strftime(format) filename = now + '_' + file.filename filename = secure_filename(filename) basepath = os.path.join( os.path.dirname(file), ‘images’) # 当前文件所在路径 # upload_path = os.path.join(basepath,secure_filename(f.filename)) file.save(os.path.join(basepath, filename)) else: filename = None return filename @app.route(‘/download/string:filename’, methods=[‘GET’]) def download(filename): if request.method == “GET”: if os.path.isfile(os.path.join(basepath, filename)): return send_from_directory(basepath, filename, as_attachment=True) pass def get_contour(img): x = np.array(img) canny = 0 for layer in np.rollaxis(x, -1): canny |= get_canny_feature(layer, 0) canny = canny.astype(np.uint8) * 255 kernel = np.array([ [0, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 0], ], dtype=np.uint8) canny = cv2.dilate(canny, kernel) # canny = Image.fromarray(canny) return canny @app.route(‘/embedding//’, methods=[“GET”, “POST”]) def icontran(img, reference): global train_model if request.method == ‘POST’: imgPath = os.path.join(basepath, img) referencePath = os.path.join(basepath, reference) img = cv2.imread(imgPath) if img is None or img.size <= 0: return None contour = get_contour(img).astype(np.float32).copy() contour = 255 - contour reference = cv2.imread(referencePath).astype(np.float32) reference = cv2.cvtColor(reference, cv2.COLOR_BGR2RGB) reference = transform_Normalize(torch.from_numpy(reference).permute(2, 0, 1).unsqueeze(0).float()/ 255.0) contour = transform_Normalize(torch.from_numpy(contour).unsqueeze(0).unsqueeze(0).float()/ 255.0) train_model.eval() transfer = train_model(contour, reference) transfer = transfer.squeeze(0) transfer = (transfer + 0.5).clamp(0, 1).mul_(255).permute(1, 2, 0).type(torch.uint8).numpy() transfer = transfer.numpy() cv2.imwrite(imgPath, transfer) return basepath # success if name == “main”: load_model() app.run(host=‘10.21.16.144’, port=9999, debug=True) 用puthon写一个调用这个服务器的gui

最新推荐

recommend-type

数据结构综合课设设计一个哈夫曼的编/译码系统.docx

在解码阶段,系统读取'CodeFile'中的编码,利用相同的哈夫曼树将其还原为原始字符,解码后的结果存储在'TextFile'文件中,以完成信息的准确传输。 4. 打印代码文件(Print): 为了便于查看和验证编码结果,系统会...
recommend-type

《CSS样式表行为手册》中文chm最新版本

CSS样式表里重点讲述“行为”功能的一本CHM参考手册,很实用方便,内容也很丰富,收藏一下哦!
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

L1正则化模型诊断指南:如何检查模型假设与识别异常值(诊断流程+案例研究)

![L1正则化模型诊断指南:如何检查模型假设与识别异常值(诊断流程+案例研究)](https://www.dmitrymakarov.ru/wp-content/uploads/2022/10/lr_lev_inf-1024x578.jpg) # 1. L1正则化模型概述 L1正则化,也被称为Lasso回归,是一种用于模型特征选择和复杂度控制的方法。它通过在损失函数中加入与模型权重相关的L1惩罚项来实现。L1正则化的作用机制是引导某些模型参数缩小至零,使得模型在学习过程中具有自动特征选择的功能,因此能够产生更加稀疏的模型。本章将从L1正则化的基础概念出发,逐步深入到其在机器学习中的应用和优势
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

为了帮助你构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,同时确保业务连续性规划的有效性,你需要从以下几个方面入手:(详细步骤、代码、mermaid流程图、扩展内容,此处略) 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 在构建框架时,首先应明确信息安全事件和信息安全事态的定义,理解它们之间如何相互关联。GB/T19716-2005和GB/Z20986-2007标准为你提供了基础框架和分类分级指南,帮助你