def load_checkpoint(model=None, optimizer=None, filename='checkpoint', logger=cur_logger): if os.path.isfile(filename): logger.info("==> Loading from checkpoint '{}'".format(filename)) checkpoint = torch.load(filename) epoch = checkpoint['epoch'] if 'epoch' in checkpoint.keys() else -1 it = checkpoint.get('it', 0.0) if model is not None and checkpoint['model_state'] is not None: model.load_state_dict(checkpoint['model_state']) if optimizer is not None and checkpoint['optimizer_state'] is not None: optimizer.load_state_dict(checkpoint['optimizer_state']) logger.info("==> Done") else: raise FileNotFoundError
时间: 2023-06-25 17:04:51 浏览: 116
解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题
这段代码用于从指定的文件中加载模型和优化器的参数。首先判断指定的文件是否存在,如果存在,则读取文件中的内容,并将模型和优化器的状态设置为读取的内容;如果不存在,则抛出FileNotFoundError异常。其中,filename是指定的文件名,model和optimizer是模型和优化器的实例,logger用于记录日志信息。在读取文件内容时,需要注意的是,如果checkpoint字典中包含'epoch'键,则将其值赋给epoch变量;否则,将epoch变量的值设置为-1。另外,还可以从checkpoint字典中获取其他自定义的键值对,例如it变量的值。
阅读全文