用pytorch写一段代码:以西储大学CWRU轴承故障的振动信号数据库作为模型的训练集,故障类型标签包括:正常、内圈故障、外圈故障和滚动体故障四类。首先将一维故障信号转换为二维灰度图作为CNN模型的输...
时间: 2024-03-05 09:49:25 浏览: 123
好的,以下是一段基于PyTorch的代码,可以将CWRU轴承故障的振动信号数据库转换为二维灰度图,并使用CNN模型进行训练和测试:
```python
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
# 定义数据集类
class CWRUDataset(Dataset):
def __init__(self, data_path, label_path, transform=None):
self.data = np.load(data_path)
self.labels = np.load(label_path)
self.transform = transform
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
data = self.data[idx]
label = self.labels[idx]
if self.transform:
data = self.transform(data)
return data, label
# 定义数据转换函数,将一维信号转换为二维灰度图
class SignalToImage(object):
def __call__(self, signal):
signal = np.expand_dims(signal, axis=0)
signal = np.repeat(signal, 3, axis=0)
signal = np.expand_dims(signal, axis=0)
image = transforms.ToPILImage()(signal)
image = transforms.Grayscale(num_output_channels=1)(image)
image = transforms.ToTensor()(image)
return image
# 定义CNN模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
self.pool = nn.MaxPool2d(kernel_size=2)
self.fc1 = nn.Linear(1600, 128)
self.fc2 = nn.Linear(128, 4)
def forward(self, x):
x = self.pool(nn.functional.relu(self.conv1(x)))
x = self.pool(nn.functional.relu(self.conv2(x)))
x = x.view(-1, 1600)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
# 加载数据集
train_dataset = CWRUDataset('train_data.npy', 'train_labels.npy', transform=SignalToImage())
test_dataset = CWRUDataset('test_data.npy', 'test_labels.npy', transform=SignalToImage())
# 定义训练和测试函数
def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = nn.functional.cross_entropy(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += nn.functional.cross_entropy(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
# 设置训练参数
batch_size = 64
epochs = 10
lr = 0.01
momentum = 0.5
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 加载数据集到DataLoader
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 创建模型和优化器
model = CNN().to(device)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
# 训练和测试模型
for epoch in range(1, epochs + 1):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
```
需要注意的是,以上代码仅提供了一个基本的框架,具体的数据预处理和模型架构需要根据实际情况进行调整和优化。
阅读全文