local_max_inner = F.max_pool2d( heatmap, kernel_size=self.nms_kernel_size, stride=1, padding=0) local_max[:, :, padding:(-padding), padding:(-padding)] = local_max_inner是什么意思
时间: 2024-04-27 08:20:02 浏览: 126
3d_heatmap-master.zip_3D heatmap_python 3D热力图_python热力图_quietly1
5星 · 资源好评率100%
这段代码使用了 PyTorch 深度学习框架中的 max_pool2d 函数对输入的 heatmap 进行最大池化操作,并将操作后的结果赋值给 local_max_inner。
具体来说,max_pool2d 函数将输入的 heatmap 通过滑动窗口的方式,取窗口内的最大值作为输出,其中 kernel_size 指定了窗口的大小,stride 指定了窗口在滑动时的步长,padding 指定了边界的填充方式。
接下来,代码将 local_max_inner 的值赋值给 local_max 的一个子张量,其中 padding 是指在 local_max 的高和宽两个维度上各添加 padding 个元素,从而保证 local_max 和 local_max_inner 的大小相同。
总的来说,这段代码的作用是对 heatmap 进行最大池化操作,并将操作后的结果复制到 local_max 的对应位置,用于后续的非极大值抑制操作。
阅读全文