def distribution1(column): x = shuju[column].value_counts().index y = shuju[column].value_counts().values plt.bar(x,y,width=shuju[column].nunique()*0.2) plt.xlabel(column) plt.figure(figsize=(15,3.5)) shuju = data2[['charging_status','dcdc_stat']] for i in range(0,4): plt.subplot(1,4,i+1) distribution1(shuju.columns[i]) plt.show()
时间: 2023-06-11 22:04:17 浏览: 102
好的,我明白了您的要求。关于您的问题,这段代码是用于绘制一个数据集中特定字段的取值分布图,其中包含两个字段:charging_status和dcdc_stat。数据集为data2。具体实现过程是,首先定义了一个函数distribution1用于绘制柱状图,并传入参数column表示当前要绘制的字段名。然后使用shuju[column].value_counts()获取该字段取值的数量分布情况,将取值保存到x和数量保存到y中,并使用plt.bar(x,y)绘制柱状图,其中柱子的宽度为该字段取值的个数乘以0.2。最后,使用plt.xlabel(column)设置柱状图的横坐标标签,使用plt.figure(figsize=(15,3.5))设置整个图的大小,并通过循环调用distribution1函数,绘制多个柱状图,最终显示整个图像。
相关问题
shuju=data_ieee30; index_load=shuju.bus(:,3)>0; n_load=sum(index_load); %%负荷节点数 load=shuju.bus(index_load,[1,3,4]); mu_load_p=shuju.bus(index_load,3); sigma_load_p=0.3*mu_load_p; %%负荷标准差为期望值30% mu_load_q=shuju.bus(index_load,4); sigma_load_q=0.3*mu_load_q; m=500; %%抽样数 p_load=zeros(n_load,m); p_loss=zeros(m,1); v_mc=zeros(30,m); %%%%%%%抽样得到负荷样本 for i=1:n_load p_load(i,:)=normrnd(mu_load_p(i),sigma_load_p(i),1,m); q_load(i,:)=normrnd(mu_load_q(i),sigma_load_q(i),1,m); end for i=1:m shuju.bus(index_load,3)=p_load(:,i); shuju.bus(index_load,4)=q_load(:,i); [basemva,bus,gen,branch]=runpf(shuju); p_loss(i)=sum(branch(:,14)+branch(:,16)); v_mc(:,i)=bus(:,8); xianlu_p_mc(:,i)=branch(:,14)/100; xianlu_q_mc(:,i)=branch(:,15)/100; end
这段代码实现了基于蒙特卡洛方法的概率潮流计算,其主要步骤如下:
1. 从给定的IEEE30数据中获取负荷节点数和负荷数据,其中负荷功率和无功功率分别服从期望值为原始数据的30%的正态分布。
2. 设置抽样参数,包括抽样数m和每个负荷节点的功率抽样值p_load和q_load。
3. 对于每个抽样值,将其代入潮流计算模型中,得到电力系统的状态量,例如节点电压、线路功率等。
4. 对于每个抽样值,统计电力系统的损耗功率p_loss,作为电力系统的性能指标之一。
5. 重复步骤3和4,进行多次抽样和计算,得到电力系统的概率分布。
6. 将每次抽样得到的电压和线路功率等状态量记录下来,用于后续的分析和评估。
需要注意的是,这段代码中使用了MATLAB自带的runpf函数进行潮流计算,其底层实现使用的是牛顿-拉夫森迭代法。同时,这段代码中只考虑了负荷功率和无功功率的随机性,其他因素如发电机出力、线路故障等因素并未考虑。因此,在实际的电力系统分析中,需要根据具体情况进行模型的建立和分析。
请解释以下代码:class MyData(Dataset): def __init__(self,train=True): super(MyData, self).__init__() url = 'shuju(2).xlsx' #读取数据 data_set = pd.read_excel(url,sheet_name='Sheet2').dropna() #读取前四类的数据作为data data = data_set.iloc[:,:-1] #数据标准化处理 standard_scaler = preprocessing.StandardScaler() X_standard = standard_scaler.fit_transform(data).astype(np.float32) #转化为tensor数据 data = torch.tensor(X_standard) #选取label label = np.array(data_set.iloc[:,-1]).astype(np.float32) #转化为tensor数据 label = torch.tensor(label) #区分训练集、测试集 x_train, x_test, y_train, y_test = data[:90,:],data[90:,:],label[:90],label[90:] if train: self.a = x_train self.b = y_train else: self.a = x_test self.b = y_test # self.trans = transforms.ToTensor
这段代码定义了一个名为 `MyData` 的数据集类,继承了 `Dataset` 类。该数据集类可以用于 PyTorch 中的数据加载器,用于训练和测试模型。
在 `__init__` 方法中,首先调用了父类 `Dataset` 的构造函数。然后,从 Excel 文件中读取数据,并将前几列作为特征数据,最后一列作为标签数据。接着,使用 `preprocessing.StandardScaler()` 对特征数据进行标准化处理,使其均值为0,标准差为1。
接下来,将标准化后的特征数据转化为 PyTorch 中的 `tensor` 数据类型,并将标签数据转化为 `tensor` 数据类型。然后,将数据集分为训练集和测试集,并将它们存储在类属性 `a` 和 `b` 中。最后,如果需要,可以使用 `transforms.ToTensor` 对数据进行转换。
在训练模型时,可以通过实例化 `MyData` 类来获得训练集和测试集的特征和标签数据。
阅读全文