indices = [(i, i + (time_step + predict_time)) for i in range(X.shape[0] - ( time_step + predict_time) + 1)]

时间: 2024-04-29 21:19:27 浏览: 6
这段代码的作用是生成一个由元组组成的列表,列表中的每个元组都包含了两个整数,分别表示数据集中一个样本的起始索引和结束索引。其中,起始索引为 i,结束索引为 i + (time_step + predict_time)。具体来说,这段代码使用了列表生成式,通过遍历一个 range 对象来生成元组并添加到列表中,其中的 range 对象的长度为 X.shape[0] - (time_step + predict_time) + 1,即数据集中可以提取出的样本数目。
相关问题

写一个python程序使用DQN的方法解决CartPole-V0问题,使用英文注释,不使用keras

Sure, I can help you with that! Here is a simple Python program using the DQN method to solve the CartPole-V0 problem. This program does not use Keras and has English comments to help you understand what's happening. First, we'll import the necessary libraries: ```python import random import numpy as np import tensorflow as tf import gym ``` Next, we'll set up our parameters: ```python # Define some hyperparameters batch_size = 32 # How many memory samples to train on replay_memory_size = 10000 # How many recent frames to remember gamma = 0.99 # Discount rate for future rewards n_episodes = 5000 # How many episodes to train for n_steps = 200 # Maximum number of steps in each episode start_epsilon = 1.0 # Initial value of epsilon for epsilon-greedy exploration end_epsilon = 0.05 # Final value of epsilon for epsilon-greedy exploration epsilon_decay_steps = 10000 # Number of steps to decay epsilon from start to end value learning_rate = 0.001 # Learning rate for the neural network optimizer ``` Now we can define our neural network: ```python # Define the neural network n_inputs = 4 # Number of input features (four observations from the environment) n_hidden = 32 # Number of hidden neurons in the network n_outputs = 2 # Number of output neurons (actions: move left or right) initializer = tf.random_normal_initializer() # Define the input and output placeholders tf.reset_default_graph() X = tf.placeholder(tf.float32, shape=[None, n_inputs]) y = tf.placeholder(tf.float32, shape=[None, n_outputs]) # Define the network architecture hidden = tf.layers.dense(X, n_hidden, activation=tf.nn.relu, kernel_initializer=initializer) logits = tf.layers.dense(hidden, n_outputs, kernel_initializer=initializer) # Define the loss function and optimizer cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(labels=y, logits=logits) optimizer = tf.train.AdamOptimizer(learning_rate) training_op = optimizer.minimize(cross_entropy) # Define the prediction and exploration functions predict_op = tf.argmax(logits, axis=1) exploration_op = tf.random_uniform(tf.shape(logits)) ``` Next, we'll define our memory and exploration strategies: ```python # Define the memory and exploration strategies replay_memory = [] def sample_memories(batch_size): indices = np.random.permutation(len(replay_memory))[:batch_size] cols = [[], [], [], [], []] # state, action, reward, next_state, done for index in indices: memory = replay_memory[index] for col, value in zip(cols, memory): col.append(value) cols = [np.array(col) for col in cols] return (cols[0], cols[1], cols[2].reshape(-1, 1), cols[3], cols[4].reshape(-1, 1)) epsilon = start_epsilon def explore(state, step): if step < epsilon_decay_steps: epsilon = start_epsilon - step / epsilon_decay_steps * (start_epsilon - end_epsilon) else: epsilon = end_epsilon if np.random.rand() < epsilon: return np.random.randint(n_outputs) else: return predict_op.eval(feed_dict={X: state.reshape(1, n_inputs)}) ``` Now we're ready to start training: ```python # Start training env = gym.make("CartPole-v0") with tf.Session() as sess: tf.global_variables_initializer().run() for episode in range(n_episodes): # Reset the environment obs = env.reset() for step in range(n_steps): # Explore the environment action = explore(obs, step) next_obs, reward, done, _ = env.step(action) # Store the experience in replay memory replay_memory.append((obs, action, reward, next_obs, done)) obs = next_obs # Sample a random batch of experiences from replay memory X_state_val, X_action_val, rewards, X_next_state_val, dones = (sample_memories(batch_size)) # Compute the TD target next_q_values = logits.eval(feed_dict={X: X_next_state_val}) max_next_q_values = np.max(next_q_values, axis=1, keepdims=True) # Compute the training targets y_val = rewards + (1 - dones) * gamma * max_next_q_values # Train the network on a batch of experiences training_op.run(feed_dict={X: X_state_val, y: y_val}) # Every 50 episodes, print the episode number and average reward if episode % 50 == 0: total_reward = 0 obs = env.reset() for i in range(n_steps): action = predict_op.eval(feed_dict={X: obs.reshape(1, n_inputs)}) obs, reward, done, _ = env.step(action) total_reward += reward if done: break print("Episode:", episode, " Reward:", total_reward) ``` And that's it! This program should train a neural network using the DQN method to solve the CartPole-V0 problem, and print the episode number and average reward every 50 episodes. Let me know if you have any questions or if there's anything else I can help you with!

dqn的python代码,用中午注解

很高兴为您解答这个问题。以下是 Deep Q-Network(DQN)的Python代码,带有中文注释说明: ```python import gym import numpy as np import tensorflow as tf from tensorflow import keras # 设置超参数 ENV_NAME = "CartPole-v0" MEMORY_SIZE = 100000 # 记忆池大小 BATCH_SIZE = 32 # 批量大小 GAMMA = 0.99 # 折扣因子 EPSILON_START = 1.0 # 初始探索率 EPSILON_MIN = 0.01 # 最低探索率 EPSILON_DECAY = 1000000 # 探索率衰减率 TARGET_UPDATE_FREQ = 1000 # 目标网络更新频率 # 创建环境 env = gym.make(ENV_NAME) num_actions = env.action_space.n # 创建Q网络和目标网络 q_net = keras.Sequential() q_net.add(keras.layers.Dense(24, input_shape=env.observation_space.shape, activation="relu")) q_net.add(keras.layers.Dense(24, activation="relu")) q_net.add(keras.layers.Dense(num_actions, activation=None)) target_net = keras.models.clone_model(q_net) target_net.set_weights(q_net.get_weights()) # 创建记忆池 memory_states = np.zeros((MEMORY_SIZE, env.observation_space.shape[0])) memory_actions = np.zeros((MEMORY_SIZE,), dtype=np.uint8) memory_rewards = np.zeros((MEMORY_SIZE,)) memory_next_states = np.zeros((MEMORY_SIZE, env.observation_space.shape[0])) memory_dones = np.zeros((MEMORY_SIZE,), dtype=np.uint8) memory_counter = 0 # 初始化探索率和步数计数器 epsilon = EPSILON_START step_count = 0 # 定义损失函数和优化器 loss_func = keras.losses.mean_squared_error optimizer = keras.optimizers.Adam(learning_rate=0.001) # 训练Q网络 for episode in range(1000): state = env.reset() episode_reward = 0 done = False while not done: # 探索或利用 if np.random.rand() < epsilon: action = env.action_space.sample() else: q_values = q_net.predict(np.expand_dims(state, axis=0)) action = np.argmax(q_values) # 执行动作,得到下一个状态、奖励和是否结束标志 next_state, reward, done, _ = env.step(action) episode_reward += reward # 将记忆添加到记忆池中 memory_states[memory_counter] = state memory_actions[memory_counter] = action memory_rewards[memory_counter] = reward memory_next_states[memory_counter] = next_state memory_dones[memory_counter] = done memory_counter = (memory_counter + 1) % MEMORY_SIZE # 更新Q网络 if memory_counter >= BATCH_SIZE: batch_indices = np.random.choice(MEMORY_SIZE, BATCH_SIZE, replace=False) batch_states = memory_states[batch_indices] batch_actions = memory_actions[batch_indices] batch_rewards = memory_rewards[batch_indices] batch_next_states = memory_next_states[batch_indices] batch_dones = memory_dones[batch_indices] q_values_next = target_net.predict_on_batch(batch_next_states) max_q_values_next = np.max(q_values_next, axis=1) targets = batch_rewards + (1 - batch_dones) * GAMMA * max_q_values_next q_values = q_net.predict_on_batch(batch_states) q_values[np.arange(BATCH_SIZE), batch_actions] = targets loss = q_net.train_on_batch(batch_states, q_values) # 更新目标网络 if step_count % TARGET_UPDATE_FREQ == 0: target_net.set_weights(q_net.get_weights()) # 更新探索率和步数计数器 epsilon = max(EPSILON_MIN, EPSILON_START - step_count / EPSILON_DECAY) step_count += 1 # 进入下一个状态 state = next_state print(f"Episode {episode + 1}: reward = {episode_reward}") ``` 这是一个简单的DQN实现,用于解决OpenAI Gym的CartPole环境。它使用TensorFlow 2.0构建神经网络,基于经验回放和固定Q目标的思想进行训练。在训练过程中,会逐渐降低探索率,提高利用率,从而使得智能体更加稳定地学习到正确的行为策略。

相关推荐

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

debugpy-1.0.0b3-cp37-cp37m-manylinux2010_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

libaacs-devel-0.10.0-1.mga8.i586.rpm

rpm -i xx.rpm 只要报错遇到aacs的可以看看架构是否一致
recommend-type

几个ACM算法pdf.zip

[ACM国际大学生程序设计竞赛题解].pdf ACM模板-清华大学.pdf ACM算法模板(吉林大学).pdf
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。