设A 和 B 是两个n * n阶矩阵,求它们的乘积矩阵C。要求使用分治法,请讲述算法设计的思路
时间: 2023-11-26 17:03:42 浏览: 285
好的,我明白了,下面是算法设计的思路:
首先,将矩阵A和矩阵B进行分割,分成四个n/2 * n/2的子矩阵。然后,对于这四个子矩阵,分别求它们的乘积矩阵。
接下来,我们可以使用分治法将这些子矩阵的乘积合并成最终的乘积矩阵C。具体方法是:
将C分成四个n/2 * n/2的子矩阵,分别表示为C11,C12,C21和C22。然后,通过公式C11 = A11 * B11 + A12 * B21,C12 = A11 * B12 + A12 * B22,C21 = A21 * B11 + A22 * B21,C22 = A21 * B12 + A22 * B22,计算出这些子矩阵。
最后,将这些子矩阵组合成最终的乘积矩阵C即可。
这样,我们就通过分治法快速地计算出了两个n * n阶矩阵的乘积矩阵C。
相关问题
设A和B是两个n*n阶的矩阵,用分治法求他们的乘积矩阵C。使用Strassen算法。C++代码
```
#include <iostream>
#include <vector>
using namespace std;
vector<vector<int>> strassen(vector<vector<int>>& A, vector<vector<int>>& B) {
int n = A.size();
vector<vector<int>> C(n, vector<int>(n));
if (n == 1) {
C[0][0] = A[0][0] * B[0][0];
return C;
}
vector<vector<int>> A11(n/2, vector<int>(n/2)), A12(n/2, vector<int>(n/2)), A21(n/2, vector<int>(n/2)), A22(n/2, vector<int>(n/2));
vector<vector<int>> B11(n/2, vector<int>(n/2)), B12(n/2, vector<int>(n/2)), B21(n/2, vector<int>(n/2)), B22(n/2, vector<int>(n/2));
vector<vector<int>> S1(n/2, vector<int>(n/2)), S2(n/2, vector<int>(n/2)), S3(n/2, vector<int>(n/2)), S4(n/2, vector<int>(n/2)), S5(n/2, vector<int>(n/2)), S6(n/2, vector<int>(n/2)), S7(n/2, vector<int>(n/2)), S8(n/2, vector<int>(n/2)), S9(n/2, vector<int>(n/2)), S10(n/2, vector<int>(n/2));
vector<vector<int>> P1(n/2, vector<int>(n/2)), P2(n/2, vector<int>(n/2)), P3(n/2, vector<int>(n/2)), P4(n/2, vector<int>(n/2)), P5(n/2, vector<int>(n/2)), P6(n/2, vector<int>(n/2)), P7(n/2, vector<int>(n/2));
// 分解A、B
for (int i = 0; i < n/2; i++) {
for (int j = 0; j < n/2; j++) {
A11[i][j] = A[i][j];
A12[i][j] = A[i][j+n/2];
A21[i][j] = A[i+n/2][j];
A22[i][j] = A[i+n/2][j+n/2];
B11[i][j] = B[i][j];
B12[i][j] = B[i][j+n/2];
B21[i][j] = B[i+n/2][j];
B22[i][j] = B[i+n/2][j+n/2];
}
}
// 计算S、P
S1 = B12 - B22;
P1 = strassen(A11, S1);
S2 = A11 + A12;
P2 = strassen(S2, B22);
S3 = A21 + A22;
P3 = strassen(S3, B11);
S4 = B21 - B11;
P4 = strassen(A22, S4);
S5 = A11 + A22;
S6 = B11 + B22;
P5 = strassen(S5, S6);
S7 = A12 - A22;
S8 = B21 + B22;
P6 = strassen(S7, S8);
S9 = A11 - A21;
S10 = B11 + B12;
P7 = strassen(S9, S10);
// 计算C
vector<vector<int>> C11(n/2, vector<int>(n/2)), C12(n/2, vector<int>(n/2)), C21(n/2, vector<int>(n/2)), C22(n/2, vector<int>(n/2));
C11 = P5 + P4 - P2 + P6;
C12 = P1 + P2;
C21 = P3 + P4;
C22 = P5 + P1 - P3 - P7;
// 合并C
for (int i = 0; i < n/2; i++) {
for (int j = 0; j < n/2; j++) {
C[i][j] = C11[i][j];
C[i][j+n/2] = C12[i][j];
C[i+n/2][j] = C21[i][j];
C[i+n/2][j+n/2] = C22[i][j];
}
}
return C;
}
int main() {
int n;
cout << "请输入矩阵的阶数n:";
cin >> n;
vector<vector<int>> A(n, vector<int>(n)), B(n, vector<int>(n));
cout << "请输入矩阵A:" << endl;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cin >> A[i][j];
}
}
cout << "请输入矩阵B:" << endl;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cin >> B[i][j];
}
}
vector<vector<int>> C = strassen(A, B);
cout << "矩阵C为:" << endl;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cout << C[i][j] << " ";
}
cout << endl;
}
return 0;
}
```
设A和B是两个n*n阶的矩阵,用分治法求他们的乘积矩阵C。使用Strassen算法。写出C++代码
以下是使用Python实现的Strassen算法:
```python
def strassen(A, B):
n = len(A)
if n == 1:
return [[A[0][0] * B[0][0]]]
else:
# 将矩阵A和B分为四个子矩阵
A11 = [[A[i][j] for j in range(n//2)] for i in range(n//2)]
A12 = [[A[i][j] for j in range(n//2, n)] for i in range(n//2)]
A21 = [[A[i][j] for j in range(n//2)] for i in range(n//2, n)]
A22 = [[A[i][j] for j in range(n//2, n)] for i in range(n//2, n)]
B11 = [[B[i][j] for j in range(n//2)] for i in range(n//2)]
B12 = [[B[i][j] for j in range(n//2, n)] for i in range(n//2)]
B21 = [[B[i][j] for j in range(n//2)] for i in range(n//2, n)]
B22 = [[B[i][j] for j in range(n//2, n)] for i in range(n//2, n)]
# 计算7个矩阵
S1 = [[B12[i][j] - B22[i][j] for j in range(n//2)] for i in range(n//2)]
S2 = [[A11[i][j] + A12[i][j] for j in range(n//2)] for i in range(n//2)]
S3 = [[A21[i][j] + A22[i][j] for j in range(n//2)] for i in range(n//2)]
S4 = [[B21[i][j] - B11[i][j] for j in range(n//2)] for i in range(n//2)]
S5 = [[A11[i][j] + A22[i][j] for j in range(n//2)] for i in range(n//2)]
S6 = [[B11[i][j] + B22[i][j] for j in range(n//2)] for i in range(n//2)]
S7 = [[A12[i][j] - A22[i][j] for j in range(n//2)] for i in range(n//2)]
# 递归计算7个子矩阵的乘积
P1 = strassen(A11, S1)
P2 = strassen(S2, B22)
P3 = strassen(S3, B11)
P4 = strassen(A22, S4)
P5 = strassen(S5, S6)
P6 = strassen(S7, S6)
P7 = strassen(S5, S4)
# 计算C的四个子矩阵
C11 = [[P5[i][j] + P4[i][j] - P2[i][j] + P6[i][j] for j in range(n//2)] for i in range(n//2)]
C12 = [[P1[i][j] + P2[i][j] for j in range(n//2)] for i in range(n//2)]
C21 = [[P3[i][j] + P4[i][j] for j in range(n//2)] for i in range(n//2)]
C22 = [[P5[i][j] + P1[i][j] - P3[i][j] - P7[i][j] for j in range(n//2)] for i in range(n//2)]
# 将四个子矩阵合并成一个n*n的矩阵
C = [[0 for j in range(n)] for i in range(n)]
for i in range(n//2):
for j in range(n//2):
C[i][j] = C11[i][j]
C[i][j+n//2] = C12[i][j]
C[i+n//2][j] = C21[i][j]
C[i+n//2][j+n//2] = C22[i][j]
return C
```
其中,S1到S7是用于计算P1到P7的临时矩阵,P1到P7是Strassen算法中的七个矩阵。最后将四个子矩阵合并成一个n*n的矩阵C。
阅读全文