import numpy as np def loaddata(): X = np.array([[1,'S'],[1,'M'],[1,'M'],[1,'S'], [1, 'S'], [2, 'S'], [2, 'M'], [2, 'M'], [2, 'L'], [2, 'L'], [3, 'L'], [3, 'M'], [3, 'M'], [3, 'L'], [3, 'L']]) y = np.array([-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,1,-1]) return X, y def Train(trainset,train_labels): m = trainset.shape[0] n = trainset.shape[1] prior_probability = {}# 先验概率 key是类别值,value是类别的概率值 conditional_probability ={}# 条件概率 key的构造:类别,特征,特征值 #类别的可能取值 labels = set(train_labels) # 计算先验概率(此时没有除以总数据量m) for label in labels: prior_probability[label] = len(train_labels[train_labels == label])+1 #计算条件概率 for i in range(m): for j in range(n): # key的构造:类别,特征,特征值 #补充计算条件概率的代码-1; key = str(train_labels[i])+','+str(j)+','+str(trainset[i][j]) conditional_probability[key] = (conditional_probability[key]+1 if (key in conditional_probability) else 1) conditional_probability_final = {} for key in conditional_probability: #补充计算条件概率的代码-2; label = key.split(',')[0] conditional_probability[key]+=1 key1 = int(key.split(',')[1]) Ni = len(set(trainset[:,key1])) conditional_probability_final[key] =conditional_probability[key]/(prior_probability[int(label)]+Ni) # 最终的先验概率(此时除以总数据量m) for label in labels: prior_probability[label] = prior_probability[label]/ (m+len(labels)) return prior_probability,conditional_probability_final,labels def predict(data): result={} for label in train_labels_set: temp=1.0 #补充预测代码; print('result=',result) #排序返回标签值 result[label] = temp*prior_probability[label] for i in range (len(data)): key = str(label)+ ','+str(i)+','+str(data[i]) result[label]*=conditional_probability_final[key] print('result=',result) #排序返回标签值 return sorted(result.items(), key=lambda x: x[1],reverse=True)[0][0] X,y = loaddata() prior_probability,conditional_probability,train_labels_set = Train(X,y) r_label = predict([2,'S']) print(' r_label =', r_label)运行次python代码

时间: 2024-01-23 15:03:45 浏览: 37
这段代码的功能是实现朴素贝叶斯算法进行二分类(标签值为-1和1),对给定的测试数据进行分类预测。其中loaddata()函数载入训练数据集X和标签集y,Train()函数训练得到先验概率prior_probability和条件概率conditional_probability_final,predict()函数根据输入的测试数据进行分类预测。 具体来说,Train()函数中计算了先验概率和条件概率,先验概率是指某个类别在总样本中出现的概率,条件概率是指在给定类别的情况下某个特征出现的概率。predict()函数中根据输入测试数据计算不同类别的概率,并返回最有可能的类别。 该代码需要先调用loaddata()函数载入训练数据,然后调用Train()函数进行训练得到先验概率prior_probability和条件概率conditional_probability_final,最后调用predict()函数进行分类预测。
相关问题

import numpy as np import pickle import math f = open(r'C:\Users\sdnugeo\Desktop\target2.pkl','rb') bi = pickle.load(f) # bi = np.array(bi) data = np.arange(0, 156) print(data) data = data.tolist() # print(data) # 每次抽取1000个数值,共抽取10次 samples = [] c = [] a = 11 r = math.ceil(len(data)/a) print(r) for i in range(a): if len(data) > r : sample = np.random.choice(data, r, replace=False) else: sample = np.random.choice(data, len(data), replace=False) # for s in sample: # data.remove(s) # continue # print(type(sample)) # sample2 = np.array(sample) b = [bi[j] for j in list(sample)] # d = np.array(b) print(type(b)) c.append(b) # c = np.concatenate(c, axis=0) # c = bi[0] print(sample) # print(b) samples.append(sample) for s in sample: data.remove(s) # sample = [s for s in sample if s in data] samples = [np.array(s) for s in samples] samples = np.concatenate(samples, axis=0) c = [np.array(e) for e in c] c = np.concatenate(c, axis=0) # samples = np.array(samples).reshape(-1) print(samples) print(c.shape) 请帮我把这段代码修改成可调用的函数

好的,你想要将这段代码封装成一个函数,可以尝试以下的实现: ```python import numpy as np import pickle import math def sample_data(filepath): f = open(filepath, 'rb') bi = pickle.load(f) data = np.arange(0, 156) data = data.tolist() samples = [] c = [] a = 11 r = math.ceil(len(data)/a) for i in range(a): if len(data) > r: sample = np.random.choice(data, r, replace=False) else: sample = np.random.choice(data, len(data), replace=False) b = [bi[j] for j in list(sample)] c.append(b) samples.append(sample) for s in sample: data.remove(s) samples = [np.array(s) for s in samples] samples = np.concatenate(samples, axis=0) c = [np.array(e) for e in c] c = np.concatenate(c, axis=0) return samples, c ``` 你可以将这个函数保存在一个.py文件中,然后在其他的python文件中,通过import导入并调用该函数。调用方法如下: ```python from your_module import sample_data filepath = r'C:\Users\sdnugeo\Desktop\target2.pkl' samples, c = sample_data(filepath) ``` 其中,filepath是你想要读取的pickle文件的路径。函数返回两个变量,分别为samples和c。

import pickle import math import numpy as np from torch.utils.data import DataLoader, TensorDataset def sample_data(filepath, idx, path): f = open(filepath, 'rb') bi = pickle.load(f) data = np.arange(0, idx) data = data.tolist() samples = [] bs = [] a = path r = math.ceil(len(data) / a) for i in range(a): if len(data) > r: sample = np.random.choice(data, r, replace=False) else: sample = np.random.choice(data, len(data), replace=False) b = [bi[j] for j in list(sample)] bs.append(b) samples.append(sample) for s in sample: data.remove(s) samples = [np.array(s) for s in samples] samples = np.concatenate(samples, axis=0) bs = [np.array(e) for e in bs] bs = np.concatenate(bs, axis=0) return samples, bs如何让每一次for循环中的b值都能单独进行一次深度学习的dataloader,最后遍历完for循环中所有的b值

你可以在for循环中将每个b值转换为一个TensorDataset对象,并将它们放入一个列表中,最后使用DataLoader将它们组成一个batch。以下是示例代码: ``` import pickle import math import numpy as np import torch from torch.utils.data import DataLoader, TensorDataset def sample_data(filepath, idx, path, batch_size): f = open(filepath, 'rb') bi = pickle.load(f) data = np.arange(0, idx) data = data.tolist() samples = [] bs = [] dataloader_list = [] # 用于存放每个b值的dataloader a = path r = math.ceil(len(data) / a) for i in range(a): if len(data) > r: sample = np.random.choice(data, r, replace=False) else: sample = np.random.choice(data, len(data), replace=False) b = [bi[j] for j in list(sample)] bs.append(b) samples.append(sample) for s in sample: data.remove(s) # 将b值转换为TensorDataset对象 dataset = TensorDataset(torch.Tensor(b)) # 创建dataloader dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) dataloader_list.append(dataloader) samples = [np.array(s) for s in samples] samples = np.concatenate(samples, axis=0) bs = [np.array(e) for e in bs] bs = np.concatenate(bs, axis=0) # 遍历dataloader_list中的所有dataloader for dataloader in dataloader_list: for batch in dataloader: # 在这里对每个batch进行深度学习操作 pass return samples, bs ``` 在上面的代码中,我们使用`TensorDataset`将每个b值转换为一个数据集对象。然后,使用`DataLoader`将每个数据集组成一个batch,并将它们放入一个列表中。最后,我们遍历dataloader_list中的所有dataloader并对它们进行深度学习操作。注意,你需要根据你的具体情况设置batch_size参数。

相关推荐

修改代码使其能够正确运行。import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.preprocessing import MinMaxScaler import cv2 import open3d as o3d from skimage import color import colour from scipy.spatial import ConvexHull def convert_data(data): res=[] data=data.tolist() for d in data: res.append(tuple(d)) # print(res) return res def load_data_and_plot_scatter(path1="1号屏srgb+rgb16预热10分钟切换0.5s.csv"): df1 = pd.read_csv(path1)[["X", "Y", "Z", "R", "G", "B"]] X1 = df1["X"].values Y1 = df1["Y"].values Z1 = df1["Z"].values df1_c = df1[["R", "G", "B"]].values / 255.0 XYZT = np.array([X1,Y1,Z1]) XYZ = np.transpose(XYZT) ABL = colour.XYZ_to_Lab(XYZ) LABT = np.array([ABL[:,1], ABL[:,2], ABL[:,0]]) LAB = np.transpose(LABT) # 将 numpy 数组转换为 open3d 中的 PointCloud 类型 pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(LAB) # 估计点云法向量 pcd.estimate_normals() # 计算点云的凸包表面 mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape(pcd, alpha=0.1) mesh.compute_vertex_normals() # 获取凸包表面上的点的坐标 surface_points = np.asarray(mesh.vertices) # 显示点云的凸包表面 o3d.visualization.draw_geometries([mesh]) # 创建一个 3D 坐标 fig = plt.figure() # ax = Axes3D(fig) ax = plt.axes(projection='3d') ax.scatter(LAB[:,0], LAB[:,1], LAB[:,2], c=df1_c) # # 设置坐标轴标签 ax.set_xlabel('a* Label') ax.set_ylabel('b* Label') ax.set_zlabel('L Label') # 显示图形 plt.show() if __name__ == "__main__": load_data_and_plot_scatter()

import os import cv2 import numpy as np def load_data(file_dir): all_num = 4000 train_num = int(all_num * 0.75) cats = [] label_cats = [] dogs = [] label_dogs = [] for file in os.listdir(file_dir): file="\\"+file name = file.split(sep='.') if 'cat' in name[0]: cats.append(file_dir + file) label_cats.append(0) else: if 'dog' in name[0]: dogs.append(file_dir + file) label_dogs.append(1) image_list = np.hstack((cats,dogs)) label_list = np.hstack((label_cats, label_dogs)) temp = np.array([image_list, label_list]) # 矩阵转置 temp = temp.transpose() # 打乱顺序 np.random.shuffle(temp) # print(temp) # 取出第一个元素作为 image 第二个元素作为 label image_list = temp[:, 0] label1_train = temp[:train_num, 1] # print(label1_train) # 单出,去掉单字符 label_train = [int(y) for y in label1_train] # print(label_train) label1_test = temp[train_num:, 1] label_test = [int(y) for y in label1_test] data_test=[] data_train = [] for i in range (all_num): if i <train_num: image= image_list[i] image = cv2.imread(image) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #将图片转换成RGB格式 image = cv2.resize(image, (28, 28)) image = image.astype('float32') image = np.array(image)/255#归一化[0,1] image=image.reshape(-1,28,28) data_train.append(image) # label_train.append(label_list[i]) else: image = image_list[i] image = cv2.imread(image) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) image = cv2.resize(image, (28, 28)) image = image.astype('float32') image = np.array(image) / 255 image = image.reshape(-1, 28, 28) data_test.append(image) # label_test.append(label_list[i]) data_train=np.array(data_train) label_train = np.array(label_train) data_test = np.array(data_test) label_test = np.array(label_test) return data_train,label_train,data_test, label_test

import pickle import numpy as np import os # from scipy.misc import imread def load_CIFAR_batch(filename): with open(filename, 'rb') as f: datadict = pickle.load(f, encoding='bytes') X = datadict[b'data'] Y = datadict[b'labels'] X = X.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1).astype("float") Y = np.array(Y) return X, Y def load_CIFAR10(ROOT): xs = [] ys = [] for b in range(1, 2): f = os.path.join(ROOT, 'data_batch_%d' % (b,)) X, Y = load_CIFAR_batch(f) xs.append(X) ys.append(Y) Xtr = np.concatenate(xs) Ytr = np.concatenate(ys) del X, Y Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, 'test_batch')) return Xtr, Ytr, Xte, Yte def get_CIFAR10_data(num_training=5000, num_validation=500, num_test=500): cifar10_dir = r'D:\daima\cifar-10-python\cifar-10-batches-py' X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) print(X_train.shape) mask = range(num_training, num_training + num_validation) X_val = X_train[mask] y_val = y_train[mask] mask = range(num_training) X_train = X_train[mask] y_train = y_train[mask] mask = range(num_test) X_test = X_test[mask] y_test = y_test[mask] mean_image = np.mean(X_train, axis=0) X_train -= mean_image X_val -= mean_image X_test -= mean_image X_train = X_train.transpose(0, 3, 1, 2).copy() X_val = X_val.transpose(0, 3, 1, 2).copy() X_test = X_test.transpose(0, 3, 1, 2).copy() return { 'X_train': X_train, 'y_train': y_train, 'X_val': X_val, 'y_val': y_val, 'X_test': X_test, 'y_test': y_test, } def load_models(models_dir): models = {} for model_file in os.listdir(models_dir): with open(os.path.join(models_dir, model_file), 'rb') as f: try: models[model_file] = pickle.load(f)['model'] except pickle.UnpicklingError: continue return models这是一个加载cifar10数据集的函数,如何修改使其能加载mnist数据集,不使用TensorFlow

import random import numpy as np import matplotlib.pyplot as plt 生成随机坐标点 def generate_points(num_points): points = [] for i in range(num_points): x = random.uniform(-10, 10) y = random.uniform(-10, 10) points.append([x, y]) return points 计算欧几里得距离 def euclidean_distance(point1, point2): return np.sqrt(np.sum(np.square(np.array(point1) - np.array(point2)))) K-means算法实现 def kmeans(points, k, num_iterations=100): num_points = len(points) # 随机选择k个点作为初始聚类中心 centroids = random.sample(points, k) # 初始化聚类标签和距离 labels = np.zeros(num_points) distances = np.zeros((num_points, k)) for i in range(num_iterations): # 计算每个点到每个聚类中心的距离 for j in range(num_points): for l in range(k): distances[j][l] = euclidean_distance(points[j], centroids[l]) # 根据距离将点分配到最近的聚类中心 for j in range(num_points): labels[j] = np.argmin(distances[j]) # 更新聚类中心 for l in range(k): centroids[l] = np.mean([points[j] for j in range(num_points) if labels[j] == l], axis=0) return labels, centroids 生成坐标点 points = generate_points(100) 对点进行K-means聚类 k_values = [2, 3, 4] for k in k_values: labels, centroids = kmeans(points, k) # 绘制聚类结果 colors = [‘r’, ‘g’, ‘b’, ‘y’, ‘c’, ‘m’] for i in range(k): plt.scatter([points[j][0] for j in range(len(points)) if labels[j] == i], [points[j][1] for j in range(len(points)) if labels[j] == i], color=colors[i]) plt.scatter([centroid[0] for centroid in centroids], [centroid[1] for centroid in centroids], marker=‘x’, color=‘k’, s=100) plt.title(‘K-means clustering with k={}’.format(k)) plt.show()import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import load_iris 载入数据集 iris = load_iris() X = iris.data y = iris.target K-means聚类 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) 可视化结果 plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_) plt.xlabel(‘Sepal length’) plt.ylabel(‘Sepal width’) plt.title(‘K-means clustering on iris dataset’) plt.show()对这个算法的结果用SSE,轮廓系数,方差比率准则,DBI几个指标分析

def unzip_infer_data(src_path,target_path): ''' 解压预测数据集 ''' if(not os.path.isdir(target_path)): z = zipfile.ZipFile(src_path, 'r') z.extractall(path=target_path) z.close() def load_image(img_path): ''' 预测图片预处理 ''' img = Image.open(img_path) if img.mode != 'RGB': img = img.convert('RGB') img = img.resize((224, 224), Image.BILINEAR) img = np.array(img).astype('float32') img = img.transpose((2, 0, 1)) # HWC to CHW img = img/255 # 像素值归一化 return img infer_src_path = '/home/aistudio/data/data55032/archive_test.zip' infer_dst_path = '/home/aistudio/data/archive_test' unzip_infer_data(infer_src_path,infer_dst_path) para_state_dict = paddle.load("MyCNN") model = MyCNN() model.set_state_dict(para_state_dict) #加载模型参数 model.eval() #验证模式 #展示预测图片 infer_path='data/archive_test/alexandrite_6.jpg' img = Image.open(infer_path) plt.imshow(img) #根据数组绘制图像 plt.show() #显示图像 #对预测图片进行预处理 infer_imgs = [] infer_imgs.append(load_image(infer_path)) infer_imgs = np.array(infer_imgs) label_dic = train_parameters['label_dict'] for i in range(len(infer_imgs)): data = infer_imgs[i] dy_x_data = np.array(data).astype('float32') dy_x_data=dy_x_data[np.newaxis,:, : ,:] img = paddle.to_tensor (dy_x_data) out = model(img) lab = np.argmax(out.numpy()) #argmax():返回最大数的索引 print("第{}个样本,被预测为:{},真实标签为:{}".format(i+1,label_dic[str(lab)],infer_path.split('/')[-1].split("_")[0])) print("结束") 以上代码进行DNN预测,根据这些写GUI页面,实现输入图片并安装CNN训练结果进行对比识别,最终输出识别结果

此代码import os import numpy as np from PIL import Image def process_image(image_path, save_path): # 读取nii文件 image_array = np.load(image_path).astype(np.float32) # 归一化到0-255之间 image_array = (image_array - np.min(image_array)) / (np.max(image_array) - np.min(image_array)) * 255 # 将数据类型转换为uint8 image_array = image_array.astype(np.uint8) # 将三维图像分成若干个二维图像 for i in range(image_array.shape[0]): image = Image.fromarray(image_array[i]) image.save(os.path.join(save_path, f"{i}.png")) def process_label(label_path, save_path): # 读取nii文件 label_array = np.load(label_path).astype(np.uint8) # 将标签转换为灰度图 label_array[label_array == 1] = 255 label_array[label_array == 2] = 128 # 将三维标签分成若干个二维标签 for i in range(label_array.shape[0]): label = Image.fromarray(label_array[i]) label.save(os.path.join(save_path, f"{i}.png")) # LiTS2017数据集路径 data_path = "C:\\Users\\Administrator\\Desktop\\LiTS2017" # 保存路径 save_path = "C:\\Users\\Administrator\\Desktop\\2D-LiTS2017" # 创建保存路径 os.makedirs(save_path, exist_ok=True) os.makedirs(os.path.join(save_path, "image"), exist_ok=True) os.makedirs(os.path.join(save_path, "mask"), exist_ok=True) # 处理Training Batch 1 image_path = os.path.join(data_path, "Training Batch 1", "volume-{}.npy") for i in range(131): process_image(image_path.format(i), os.path.join(save_path, "image")) # 处理Training Batch 2 label_path = os.path.join(data_path, "Training Batch 2", "segmentation-{}.npy") for i in range(131): process_label(label_path.format(i), os.path.join(save_path, "mask"))出现FileNotFoundError: [Errno 2] No such file or directory: 'C:\\Users\\Administrator\\Desktop\\LiTS2017\\Training Batch 1\\volume-0.npy',修复它,并给出完整代码

def unzip_infer_data(src_path,target_path): ''' 解压预测数据集 ''' if(not os.path.isdir(target_path)): z = zipfile.ZipFile(src_path, 'r') z.extractall(path=target_path) z.close() def load_image(img_path): ''' 预测图片预处理 ''' img = Image.open(img_path) if img.mode != 'RGB': img = img.convert('RGB') img = img.resize((224, 224), Image.BILINEAR) img = np.array(img).astype('float32') img = img.transpose((2, 0, 1)) # HWC to CHW img = img/255 # 像素值归一化 return img infer_src_path = './archive_test.zip' infer_dst_path = './archive_test' unzip_infer_data(infer_src_path,infer_dst_path) para_state_dict = paddle.load("MyDNN") model = MyDNN() model.set_state_dict(para_state_dict) #加载模型参数 model.eval() #验证模式 #展示预测图片 infer_path='./archive_test/alexandrite_18.jpg' img = Image.open(infer_path) plt.imshow(img) #根据数组绘制图像 plt.show() #显示图像 #对预测图片进行预处理 infer_imgs = [] infer_imgs.append(load_image(infer_path)) infer_imgs = np.array(infer_imgs) label_dic = train_parameters['label_dict'] for i in range(len(infer_imgs)): data = infer_imgs[i] dy_x_data = np.array(data).astype('float32') dy_x_data=dy_x_data[np.newaxis,:, : ,:] img = paddle.to_tensor (dy_x_data) out = model(img) lab = np.argmax(out.numpy()) #argmax():返回最大数的索引 print("第{}个样本,被预测为:{},真实标签为:{}".format(i+1,label_dic[str(lab)],infer_path.split('/')[-1].split("_")[0])) print("结束")根据这一段代码续写一段利用这个模型进行宝石预测的GUI界面

最新推荐

recommend-type

实训十三 DHCP服务器安装与设置.doc

服务器
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】网络编程入门:使用HTTP协议

![【基础】网络编程入门:使用HTTP协议](https://img-blog.csdnimg.cn/direct/4fbc6b5a6d744a519429654f56ea988e.png) # 1. 网络编程基础** **1.1 网络基础知识** 网络是连接计算机和设备的系统,允许它们交换数据和资源。它由节点(计算机、服务器、路由器等)和连接它们的数据链路组成。网络可以是局域网(LAN)、广域网(WAN)或互联网。 **1.2 TCP/IP协议栈** TCP/IP协议栈是一组通信协议,用于在网络上传输数据。它分为四层: * **链路层:**处理物理连接和数据传输。 * **网络层:
recommend-type

matlab画矢量分布图

在MATLAB中,绘制矢量分布图通常用于可视化二维或三维空间中的向量场,这有助于理解力场、风速、磁场等现象的分布情况。以下是使用MATLAB创建矢量分布图的基本步骤: 1. 准备数据:首先,你需要有一个表示向量场的矩阵,其中每个元素代表一个点的x、y坐标及其对应的矢量分量。 2. 使用`quiver`函数:MATLAB提供了一个内置函数`quiver(x, y, U, V)`,其中`x`和`y`是网格的行和列坐标,`U`和`V`是对应于每个网格点的x和y分量的向量值。 ```matlab [X, Y] = meshgrid(x, y); % 创建网格 quiver(X,
recommend-type

计算机系统基础实验:缓冲区溢出攻击(Lab3)

"计算机系统基础实验-Lab3-20191主要关注缓冲区溢出攻击,旨在通过实验加深学生对IA-32函数调用规则和栈结构的理解。实验涉及一个名为`bufbomb`的可执行程序,学生需要进行一系列缓冲区溢出尝试,以改变程序的内存映像,执行非预期操作。实验分为5个难度级别,从Smoke到Nitro,逐步提升挑战性。实验要求学生熟悉C语言和Linux环境,并能熟练使用gdb、objdump和gcc等工具。实验数据包括`lab3.tar`压缩包,内含`bufbomb`、`bufbomb.c`源代码、`makecookie`(用于生成唯一cookie)、`hex2raw`(字符串格式转换工具)以及bufbomb的反汇编源程序。运行bufbomb时需提供学号作为命令行参数,以生成特定的cookie。" 在这个实验中,核心知识点主要包括: 1. **缓冲区溢出攻击**:缓冲区溢出是由于编程错误导致程序在向缓冲区写入数据时超过其实际大小,溢出的数据会覆盖相邻内存区域,可能篡改栈上的重要数据,如返回地址,从而控制程序执行流程。实验要求学生了解并实践这种攻击方式。 2. **IA-32函数调用规则**:IA-32架构下的函数调用约定,包括参数传递、栈帧建立、返回值存储等,这些规则对于理解缓冲区溢出如何影响栈结构至关重要。 3. **栈结构**:理解栈的工作原理,包括局部变量、返回地址、保存的寄存器等如何在栈上组织,是成功实施溢出攻击的基础。 4. **Linux环境**:实验在Linux环境下进行,学生需要掌握基本的Linux命令行操作,以及如何在该环境下编译、调试和运行程序。 5. **GDB**:GNU Debugger(GDB)是调试C程序的主要工具,学生需要学会使用它来设置断点、查看内存、单步执行等,以分析溢出过程。 6. **Objdump**:这是一个反汇编工具,用于查看二进制文件的汇编代码,帮助理解程序的内存布局和执行逻辑。 7. **C语言编程**:实验涉及修改C源代码和理解已有的C程序,因此扎实的C语言基础是必不可少的。 8. **安全性与学术诚信**:实验强调了学术诚信的重要性,抄袭将受到严厉的处罚,这提示学生必须独立完成实验,尊重他人的工作。 9. **编程技巧**:实验要求学生能够熟练运用编程技巧,如缓冲区填充、跳转指令构造等,以实现对bufbomb的溢出攻击。 10. **实验等级与挑战**:不同级别的实验难度递增,鼓励学生逐步提升自己的技能和理解,从基础的缓冲区溢出到更复杂的攻击技术。 通过这个实验,学生不仅可以学习到安全相关的概念和技术,还能锻炼实际操作和问题解决能力,这对于理解和预防现实世界中的安全威胁具有重要意义。