nsga2计算拥挤距离的matlab代码示例及解释
时间: 2023-08-21 13:01:38 浏览: 110
NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种常用的多目标优化算法,其中拥挤距离(Crowding Distance)是一种用于解决多目标优化问题中的拥挤度问题的方法。以下是拥挤距离的 MATLAB 代码示例及解释:
假设我们有一个多目标优化问题,其中每个解决方案有两个目标函数:f1 和 f2。我们的目标是找到 Pareto 前沿,即所有非支配解的集合。为了计算拥挤距离,我们需要按照非支配关系对解进行排序。以下是一个排序函数的示例代码:
```matlab
function [fronts, ranks] = non_dominated_sorting(f1, f2)
% f1: n-by-1 vector of objective function values for the first objective
% f2: n-by-1 vector of objective function values for the second objective
% fronts: a cell array of fronts, where each front is a vector of indices
% corresponding to solutions in that front
% ranks: n-by-1 vector of ranks for each solution
n = length(f1);
% compute dominance matrix
dominance_matrix = false(n);
for i = 1:n
for j = 1:n
if i == j
continue;
end
if f1(i) <= f1(j) && f2(i) <= f2(j) && (f1(i) < f1(j) || f2(i) < f2(j))
dominance_matrix(i,j) = true;
end
end
end
% compute dominance counts
dominance_counts = sum(dominance_matrix, 1);
% initialize fronts and ranks
fronts = {};
ranks = zeros(n, 1);
% find first front
current_front = find(dominance_counts == 0);
fronts{1} = current_front;
ranks(current_front) = 1;
% find subsequent fronts
while ~isempty(current_front)
next_front = [];
for i = 1:length(current_front)
current_solution = current_front(i);
dominated_solutions = find(dominance_matrix(:,current_solution));
for j = 1:length(dominated_solutions)
dominated_solution = dominated_solutions(j);
dominance_counts(dominated_solution) = dominance_counts(dominated_solution) - 1;
if dominance_counts(dominated_solution) == 0
next_front = [next_front dominated_solution];
ranks(dominated_solution) = length(fronts) + 1;
end
end
end
fronts{end+1} = next_front;
current_front = next_front;
end
end
```
此函数将返回一个单元数组 fronts,其中的每个元素是一个矢量,该矢量包含前缘中解的索引。ranks 向量包含每个解的等级。
一旦我们有了排序,我们就可以计算拥挤距离。以下是一个计算拥挤距离的函数示例代码:
```matlab
function crowding_distances = crowding_distance(f1, f2, fronts)
% f1: n-by-1 vector of objective function values for the first objective
% f2: n-by-1 vector of objective function values for the second objective
% fronts: a cell array of fronts, where each front is a vector of indices
% corresponding to solutions in that front
% crowding_distances: n-by-1 vector of crowding distances
n = length(f1);
crowding_distances = zeros(n, 1);
for i = 1:length(fronts)
front = fronts{i};
m = length(front);
% sort solutions in this front by first objective
[~, order] = sort(f1(front));
front = front(order);
% set boundaries for crowding distance calculation
crowding_distances(front(1)) = inf;
crowding_distances(front(m)) = inf;
% calculate crowding distance for other solutions in this front
for j = 2:m-1
crowding_distances(front(j)) = crowding_distances(front(j)) + ...
(f1(front(j+1)) - f1(front(j-1))) / (max(f1) - min(f1)) + ...
(f2(front(j+1)) - f2(front(j-1))) / (max(f2) - min(f2));
end
end
end
```
此函数将返回一个 crowding_distances 向量,其中包含每个解的拥挤距离。对于每个前缘,我们首先按照第一个目标函数对解进行排序,并设置边界点的拥挤距离为无穷大。然后,对于前沿中的其他解,我们计算它们与相邻解的距离,并将其添加到该解的拥挤距离中。
这些示例代码可以用于计算拥挤距离,并结合非支配排序算法 NSGA-II 来解决多目标优化问题。
阅读全文