这段代码出现了这个问题: vectors = np.stack((x.ravel(), y.ravel(), z.ravel()), axis=1) - np.stack((x.ravel(), y.ravel(), z.ravel()), axis=0) ValueError: operands could not be broadcast together with shapes (64,3) (3,64) ,代码如下:import numpy as np # 定义坐标信息 points = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) # 生成所有点两两组合的向量 x, y, z = np.meshgrid(points[:, 0], points[:, 1], points[:, 2], indexing='ij') vectors = np.stack((x.ravel(), y.ravel(), z.ravel()), axis=1) - np.stack((x.ravel(), y.ravel(), z.ravel()), axis=0) # 判断每个向量是否平行于x-y面、x-z面或y-z面 parallel_xy = np.abs(vectors[:, 2]) < 1e-10 parallel_xz = np.abs(vectors[:, 1]) < 1e-10 parallel_yz = np.abs(vectors[:, 0]) < 1e-10 # 输出结果 print("平行于x-y面的向量:") print(vectors[parallel_xy]) print("平行于x-z面的向量:") print(vectors[parallel_xz]) print("平行于y-z面的向量:") print(vectors[parallel_yz]),帮我优化这段代码,解决运行的错误
时间: 2024-02-29 21:51:04 浏览: 330
测试Vector
这段代码的错误已经在之前的回答中解释过了,是由于两个数组的形状不兼容导致的。要解决这个问题,我们需要将第二个数组的形状转置,使其与第一个数组的形状匹配。可以使用numpy库中的transpose函数或者T属性来实现。
下面是修改后的代码:
```python
import numpy as np
# 定义坐标信息
points = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
# 生成所有点两两组合的向量
x, y, z = np.meshgrid(points[:, 0], points[:, 1], points[:, 2], indexing='ij')
vectors = np.stack((x.ravel(), y.ravel(), z.ravel()), axis=1) - np.stack((x.ravel(), y.ravel(), z.ravel()), axis=0).T
# 判断每个向量是否平行于x-y面、x-z面或y-z面
parallel_xy = np.abs(vectors[:, 2]) < 1e-10
parallel_xz = np.abs(vectors[:, 1]) < 1e-10
parallel_yz = np.abs(vectors[:, 0]) < 1e-10
# 输出结果
print("平行于x-y面的向量:")
print(vectors[parallel_xy])
print("平行于x-z面的向量:")
print(vectors[parallel_xz])
print("平行于y-z面的向量:")
print(vectors[parallel_yz])
```
在这个版本的代码中,我们将第二个数组的形状进行了转置,使其与第一个数组的形状匹配。这样就可以避免之前出现的形状不兼容的问题了。
阅读全文