多尺度注意力机制python代码
时间: 2023-10-12 18:10:56 浏览: 86
多尺度注意力机制可以通过以下代码实现:
```python
import torch
import torch.nn as nn
class MultiScaleAttention(nn.Module):
def __init__(self, in_channels):
super(MultiScaleAttention, self).__init__()
self.in_channels = in_channels
self.query_conv = nn.Conv2d(in_channels, in_channels // 8, 1)
self.key_conv = nn.Conv2d(in_channels, in_channels // 8, 1)
self.value_conv = nn.Conv2d(in_channels, in_channels, 1)
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
batch_size, channels, height, width = x.size()
# 通过query、key、value卷积层计算Q、K、V
proj_query = self.query_conv(x).view(batch_size, -1, width*height).permute(0, 2, 1)
proj_key = self.key_conv(x).view(batch_size, -1, width*height)
energy = torch.bmm(proj_query, proj_key)
attention = torch.softmax(energy, dim=-1)
proj_value = self.value_conv(x).view(batch_size, -1, width*height)
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(batch_size, channels, height, width)
out = self.gamma * out + x
return out
```
该代码中的 `MultiScaleAttention` 类实现了多尺度注意力机制,其中包含了 `query_conv`、`key_conv` 和 `value_conv` 三个卷积层,分别用于计算 Q、K、V。在前向传播过程中,通过计算 Q、K、V,然后对注意力矩阵进行 softmax 计算,最后再与 V 进行矩阵乘法得到输出,再乘以一个可学习的参数 gamma 并加上输入,即为最终的输出。
阅读全文