# building first layer input_channel = _make_divisible(input_channel * width_mult, round_nearest) self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) features = [ConvBNReLU(3, input_channel, stride=2)] # building inverted residual blocks for t, c, n, s in self.cfgs: output_channel = _make_divisible(c * width_mult, round_nearest) for i in range(n): stride = s if i == 0 else 1 features.append(block(input_channel, output_channel, stride, expand_ratio=t)) input_channel = output_channel # building last several layers features.append(ConvBNReLU(input_channel, self.out_channels, kernel_size=1)) # make it nn.CellList self.features = nn.SequentialCell(features) self._initialize_weights()
时间: 2024-04-09 13:31:52 浏览: 195
ones.rar_The Given_acm ones_ones a_ones acm_ones.cp
以上代码片段是MobileNetV2Backbone类中的一部分,用于构建网络的各个层次。
首先,通过_make_divisible函数将输入通道数input_channel与缩放因子width_mult相乘并取整,得到经过缩放后的输入通道数。然后,通过_make_divisible函数将最后输出通道数last_channel与缩放因子width_mult相乘并取整,得到经过缩放后的输出通道数。这两个通道数将在网络构建过程中用到。
接下来,定义了一个features列表,用于存储网络的各个层次。首先,在列表中添加了一个ConvBNReLU层,用于处理输入图像,其中输入通道数为3,输出通道数为经过缩放后的输入通道数,步长为2。
然后,通过遍历self.cfgs中的配置,依次构建倒残差块。对于每个配置,先计算出经过缩放后的输出通道数output_channel。然后,在内部循环中,根据重复次数n构建多个倒残差块,并将其添加到features列表中。其中,stride的值根据是否为第一个块来确定。
最后,在features列表中添加了一个ConvBNReLU层,用于将最后一个倒残差块的输出通道数转换为最终的输出通道数self.out_channels。这一步使用了1x1卷积核。
最后,将features列表转换为nn.SequentialCell类型,并赋值给self.features,作为网络的主要结构。同时调用了_initialize_weights()函数来对网络的权重进行初始化。
如果还有其他问题,请继续提问。
阅读全文