plot_model_history 出现acc错误

时间: 2023-06-25 11:03:25 浏览: 50
如果您在使用 `plot_model_history` 函数时遇到了 "acc" 错误,这可能是因为您的模型历史记录中没有准确性指标。如果您的模型只有一个损失函数而没有准确性指标,您可以在模型训练时添加准确性指标,例如: ```python model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) ``` 如果您的模型确实具有准确性指标,但仍然遇到了 "acc" 错误,请确保指标名称与 `plot_model_history` 函数中指定的名称相同。例如: ```python plot_model_history(history, ['accuracy', 'val_accuracy']) ``` 在这个例子中,如果您的准确性指标名称不是 "accuracy" 和 "val_accuracy",那么您需要相应地更改 `plot_model_history` 函数中的指标名称。
相关问题

请为我解释这段代码,添加中文注释: axs[0].plot(range(1, len(model_history.history['acc']) + 1), model_history.history['acc']) axs[0].plot(range(1, len(model_history.history['val_acc']) + 1), model_history.history['val_acc']) axs[0].set_title('Model Accuracy') axs[0].set_ylabel('Accuracy') axs[0].set_xlabel('Epoch') axs[0].set_xticks(np.arange(1, len(model_history.history['acc']) + 1), len(model_history.history['acc']) / 10) axs[0].legend(['train', 'val'], loc='best')

这段代码使用了Matplotlib库来绘制模型训练过程中准确率的变化。 - `axs[0].plot(range(1, len(model_history.history['acc']) + 1), model_history.history['acc'])`:绘制训练集准确率变化曲线,横坐标为训练轮数,纵坐标为准确率,使用蓝色实线表示。 - `axs[0].plot(range(1, len(model_history.history['val_acc']) + 1), model_history.history['val_acc'])`:绘制验证集准确率变化曲线,横坐标为训练轮数,纵坐标为准确率,使用绿色实线表示。 - `axs[0].set_title('Model Accuracy')`:设置子图标题为“Model Accuracy”。 - `axs[0].set_ylabel('Accuracy')`:设置子图纵坐标轴标签为“Accuracy”。 - `axs[0].set_xlabel('Epoch')`:设置子图横坐标轴标签为“Epoch”。 - `axs[0].set_xticks(np.arange(1, len(model_history.history['acc']) + 1), len(model_history.history['acc']) / 10)`:设置子图横坐标轴刻度位置和标签。np.arange(1, len(model_history.history['acc']) + 1)表示轮数范围,len(model_history.history['acc']) / 10表示每10个轮数放置一个刻度。 - `axs[0].legend(['train', 'val'], loc='best')`:设置子图图例,其中['train', 'val']表示训练集和验证集的标签,loc='best'表示自动选择最佳位置放置图例。 绘制损失变化曲线的代码与准确率变化曲线类似,不再赘述。

为什么运行这一段代码,没有生成结果 def plot_model_history(model_history): """ Plot Accuracy and Loss curves given the model_history """ fig, axs = plt.subplots(1, 2, figsize=(15, 5)) # summarize history for accuracy axs[0].plot(range(1, len(model_history.history['acc']) + 1), model_history.history['acc']) axs[0].plot(range(1, len(model_history.history['val_acc']) + 1), model_history.history['val_acc']) axs[0].set_title('Model Accuracy') axs[0].set_ylabel('Accuracy') axs[0].set_xlabel('Epoch') axs[0].set_xticks(np.arange(1, len(model_history.history['acc']) + 1), len(model_history.history['acc']) / 10) axs[0].legend(['train', 'val'], loc='best') # summarize history for loss axs[1].plot(range(1, len(model_history.history['loss']) + 1), model_history.history['loss']) axs[1].plot(range(1, len(model_history.history['val_loss']) + 1), model_history.history['val_loss']) axs[1].set_title('Model Loss') axs[1].set_ylabel('Loss') axs[1].set_xlabel('Epoch') axs[1].set_xticks(np.arange(1, len(model_history.history['loss']) + 1), len(model_history.history['loss']) / 10) axs[1].legend(['train', 'val'], loc='best') fig.savefig('plot.png') plt.show()

可能是因为缺少了必要的库导入,需要导入如下库: ```python import matplotlib.pyplot as plt import numpy as np ``` 若已经导入了这两个库,可能需要检查传入函数中的参数是否正确或存在错误。

相关推荐

tokenizer = Tokenizer(num_words=max_words) tokenizer.fit_on_texts(data['text']) sequences = tokenizer.texts_to_sequences(data['text']) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) data = pad_sequences(sequences,maxlen=maxlen) labels = np.array(data[:,:1]) print('Shape of data tensor:',data.shape) print('Shape of label tensor',labels.shape) indices = np.arange(data.shape[0]) np.random.shuffle(indices) data = data[indices] labels = labels[indices] x_train = data[:traing_samples] y_train = data[:traing_samples] x_val = data[traing_samples:traing_samples+validation_samples] y_val = data[traing_samples:traing_samples+validation_samples] model = Sequential() model.add(Embedding(max_words,100,input_length=maxlen)) model.add(Flatten()) model.add(Dense(32,activation='relu')) model.add(Dense(10000,activation='sigmoid')) model.summary() model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) history = model.fit(x_train,y_train, epochs=1, batch_size=128, validation_data=[x_val,y_val]) import matplotlib.pyplot as plt acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epoachs = range(1,len(acc) + 1) plt.plot(epoachs,acc,'bo',label='Training acc') plt.plot(epoachs,val_acc,'b',label = 'Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epoachs,loss,'bo',label='Training loss') plt.plot(epoachs,val_loss,'b',label = 'Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() max_len = 10000 x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_len) x_test = data[10000:,0:] x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_len) # 将标签转换为独热编码 y_train = np.eye(2)[y_train] y_test = data[10000:,:1] y_test = np.eye(2)[y_test]

import matplotlib.pyplot as plt import pandas as pd from keras.models import Sequential from keras import layers from keras import regularizers import os import keras import keras.backend as K import numpy as np from keras.callbacks import LearningRateScheduler data = "data.csv" df = pd.read_csv(data, header=0, index_col=0) df1 = df.drop(["y"], axis=1) lbls = df["y"].values - 1 wave = np.zeros((11500, 178)) z = 0 for index, row in df1.iterrows(): wave[z, :] = row z+=1 mean = wave.mean(axis=0) wave -= mean std = wave.std(axis=0) wave /= std def one_hot(y): lbl = np.zeros(5) lbl[y] = 1 return lbl target = [] for value in lbls: target.append(one_hot(value)) target = np.array(target) wave = np.expand_dims(wave, axis=-1) model = Sequential() model.add(layers.Conv1D(64, 15, strides=2, input_shape=(178, 1), use_bias=False)) model.add(layers.ReLU()) model.add(layers.Conv1D(64, 3)) model.add(layers.Conv1D(64, 3, strides=2)) model.add(layers.BatchNormalization()) model.add(layers.Dropout(0.5)) model.add(layers.Conv1D(64, 3)) model.add(layers.Conv1D(64, 3, strides=2)) model.add(layers.BatchNormalization()) model.add(layers.LSTM(64, dropout=0.5, return_sequences=True)) model.add(layers.LSTM(64, dropout=0.5, return_sequences=True)) model.add(layers.LSTM(32)) model.add(layers.Dropout(0.5)) model.add(layers.Dense(5, activation="softmax")) model.summary() save_path = './keras_model3.h5' if os.path.isfile(save_path): model.load_weights(save_path) print('reloaded.') adam = keras.optimizers.adam() model.compile(optimizer=adam, loss="categorical_crossentropy", metrics=["acc"]) # 计算学习率 def lr_scheduler(epoch): # 每隔100个epoch,学习率减小为原来的0.5 if epoch % 100 == 0 and epoch != 0: lr = K.get_value(model.optimizer.lr) K.set_value(model.optimizer.lr, lr * 0.5) print("lr changed to {}".format(lr * 0.5)) return K.get_value(model.optimizer.lr) lrate = LearningRateScheduler(lr_scheduler) history = model.fit(wave, target, epochs=400, batch_size=128, validation_split=0.2, verbose=2, callbacks=[lrate]) model.save_weights(save_path) print(history.history.keys()) # summarize history for accuracy plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()

import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt Let us define a plt function for simplicity def plt_loss(x,training_metric,testing_metric,ax,colors = ['b']): ax.plot(x,training_metric,'b',label = 'Train') ax.plot(x,testing_metric,'k',label = 'Test') ax.set_xlabel('Epochs') ax.set_ylabel('Accuracy') plt.legend() plt.grid() plt.show() tf.keras.utils.set_random_seed(1) We import the Minist Dataset using Keras.datasets (train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data() We first vectorize the image (28*28) into a vector (784) train_data = train_data.reshape(train_data.shape[0],train_data.shape[1]train_data.shape[2]) # 60000784 test_data = test_data.reshape(test_data.shape[0],test_data.shape[1]test_data.shape[2]) # 10000784 We next change label number to a 10 dimensional vector, e.g., 1-> train_labels = keras.utils.to_categorical(train_labels,10) test_labels = keras.utils.to_categorical(test_labels,10) start to build a MLP model N_batch_size = 5000 N_epochs = 100 lr = 0.01 we build a three layer model, 784 -> 64 -> 10 MLP_3 = keras.models.Sequential([ keras.layers.Dense(128, input_shape=(784,),activation='relu'), keras.layers.Dense(64, activation='relu'), keras.layers.Dense(10,activation='softmax') ]) MLP_3.compile( optimizer=keras.optimizers.Adam(lr), loss= 'categorical_crossentropy', metrics = ['accuracy'] ) History = MLP_3.fit(train_data,train_labels, batch_size = N_batch_size, epochs = N_epochs,validation_data=(test_data,test_labels), shuffle=False) train_acc = History.history['accuracy'] test_acc = History.history对于该模型,使用不同数量的训练数据(5000,10000,15000,…,60000,公差=5000的等差数列),绘制训练集和测试集准确率(纵轴)关于训练数据大小(横轴)的曲线

import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt ## Let us define a plt function for simplicity def plt_loss(x,training_metric,testing_metric,ax,colors = ['b']): ax.plot(x,training_metric,'b',label = 'Train') ax.plot(x,testing_metric,'k',label = 'Test') ax.set_xlabel('Epochs') ax.set_ylabel('Accuarcy')# ax.set_ylabel('Categorical Crossentropy Loss') plt.legend() plt.grid() plt.show() tf.keras.utils.set_random_seed(1) ## We import the Minist Dataset using Keras.datasets (train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data() ## We first vectorize the image (28*28) into a vector (784) train_data = train_data.reshape(train_data.shape[0],train_data.shape[1]train_data.shape[2]) # 60000784 test_data = test_data.reshape(test_data.shape[0],test_data.shape[1]test_data.shape[2]) # 10000784 ## We next change label number to a 10 dimensional vector, e.g., 1->[0,1,0,0,0,0,0,0,0,0] train_labels = keras.utils.to_categorical(train_labels,10) test_labels = keras.utils.to_categorical(test_labels,10) ## start to build a MLP model N_batch_size = 5000 N_epochs = 100 lr = 0.01 ## we build a three layer model, 784 -> 64 -> 10 MLP_4 = keras.models.Sequential([ keras.layers.Dense(128, input_shape=(784,),activation='relu'), keras.layers.Dense(64,activation='relu'), keras.layers.Dense(10,activation='softmax') ]) MLP_4.compile( optimizer=keras.optimizers.Adam(lr), loss= 'categorical_crossentropy', metrics = ['accuracy'] ) History = MLP_4.fit(train_data[:10000],train_labels[:10000], batch_size = N_batch_size, epochs = N_epochs,validation_data=(test_data,test_labels), shuffle=False) train_acc = History.history['accuracy'] test_acc = History.history['val_accuracy']在该模型中加入early stopping,使用monitor='loss', patience = 2设置代码

import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt ## Let us define a plt function for simplicity def plt_loss(x,training_metric,testing_metric,ax,colors = ['b']): ax.plot(x,training_metric,'b',label = 'Train') ax.plot(x,testing_metric,'k',label = 'Test') ax.set_xlabel('Epochs') ax.set_ylabel('Accuarcy')# ax.set_ylabel('Categorical Crossentropy Loss') plt.legend() plt.grid() plt.show() tf.keras.utils.set_random_seed(1) ## We import the Minist Dataset using Keras.datasets (train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data() ## We first vectorize the image (28*28) into a vector (784) train_data = train_data.reshape(train_data.shape[0],train_data.shape[1]*train_data.shape[2]) # 60000*784 test_data = test_data.reshape(test_data.shape[0],test_data.shape[1]*test_data.shape[2]) # 10000*784 ## We next change label number to a 10 dimensional vector, e.g., 1->[0,1,0,0,0,0,0,0,0,0] train_labels = keras.utils.to_categorical(train_labels,10) test_labels = keras.utils.to_categorical(test_labels,10) ## start to build a MLP model N_batch_size = 5000 N_epochs = 100 lr = 0.01 # ## we build a three layer model, 784 -> 64 -> 10 MLP_3 = keras.models.Sequential([ keras.layers.Dense(64, input_shape=(784,),activation='relu'), keras.layers.Dense(10,activation='softmax') ]) MLP_3.compile( optimizer=keras.optimizers.Adam(lr), loss= 'categorical_crossentropy', metrics = ['accuracy'] ) History = MLP_3.fit(train_data,train_labels, batch_size = N_batch_size, epochs = N_epochs,validation_data=(test_data,test_labels), shuffle=False) train_acc = History.history['accuracy'] test_acc = History.history['val_accuracy']模仿此段代码,写一个双隐层感知器(输入层784,第一隐层128,第二隐层64,输出层10)

import tensorflow as tf from tensorflow.keras import datasets, layers, models, optimizers from tensorflow.keras.preprocessing import image_dataset_from_directory import matplotlib.pyplot as plt # 定义数据集路径 data_dir = r'F:\Pycham\project\data\FMD' # 定义图像大小和批处理大小 image_size = (224, 224) batch_size = 32 # 从目录中加载训练数据集 train_ds = image_dataset_from_directory( data_dir, validation_split=0.2, subset="training", seed=123, image_size=image_size, batch_size=batch_size) # 从目录中加载验证数据集 val_ds = image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=image_size, batch_size=batch_size) # 构建卷积神经网络模型 model = models.Sequential() model.add(layers.experimental.preprocessing.Rescaling(1./255, input_shape=(image_size[0], image_size[1], 3))) model.add(layers.Conv2D(32, (3, 3), activation='selu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='selu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='selu')) model.add(layers.Conv2D(128, (3, 3), activation='selu')) model.add(layers.MaxPooling2D((2, 2))) # 添加全连接层 model.add(layers.Flatten()) model.add(layers.Dense(128, activation='selu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(64, activation='selu')) model.add(layers.Dense(10)) # 编译模型,使用 SGD 优化器和 Categorical Crossentropy 损失函数 model.compile(optimizer=optimizers.SGD(learning_rate=0.01, momentum=0.9), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # 训练模型,共训练 20 轮 history = model.fit(train_ds, epochs=5, validation_data=val_ds) # 绘制训练过程中的准确率和损失曲线 plt.plot(history.history['accuracy'], label='accuracy') plt.plot(history.history['val_accuracy'], label = 'val_accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.ylim([0.5, 1]) plt.legend(loc='lower right') plt.show() # 在测试集上评估模型准确率 test_loss, test_acc = model.evaluate(val_ds) print(f'测试准确率: {test_acc}')上述代码得出的准确率仅为0.5,请你通过修改学习率等方式修改代码,假设数据集路径为F:\Pycham\project\data\FMD

def define_cnn_model(): # 使用Sequential序列模型 model = Sequential() # 卷积层 model.add(Conv2D(32,(3,3),activation="relu",padding="same",input_shape=(200,200,3))) # 第一层即为卷积层,要设置输入进来图片的样式 3是颜色通道个数 # 最大池化层 model.add(MaxPool2D((2,2))) # 池化窗格 model.add(Conv2D(64,(3,3),activation="relu",padding="same",input_shape=(200,200,3))) # 第一层即为卷积层,要设置输入进来图片的样式 3是颜色通道个数 # 最大池化层 model.add(MaxPool2D((2,2))) # 池化窗格 model.add(Conv2D(128,(3,3),activation="relu",padding="same",input_shape=(200,200,3))) # 第一层即为卷积层,要设置输入进来图片的样式 3是颜色通道个数 # 最大池化层 model.add(MaxPool2D((2,2))) # 池化窗格 model.add(Flatten()) # Flatten层 # 全连接层 model.add(Dense(128,activation="relu")) # 128为神经元的个数 model.add(Dense(1,activation="sigmoid")) # 编译模型 opt = SGD(lr= 0.001,momentum=0.9) # 随机梯度 model.compile(optimizer=opt,loss="binary_crossentropy",metrics=["accuracy"]) return model def train_cnn_model(): # 实例化模型 model = define_cnn_model() # 创建图片生成器 datagen = ImageDataGenerator(rescale=1.0/255.0) train_it = datagen.flow_from_directory( r"../Test1/Train", class_mode="binary", batch_size=64, target_size=(200, 200)) # batch_size:一次拿出多少张照片 targe_size:将图片缩放到一定比例 # 训练模型 model.fit(train_it, steps_per_epoch=len(train_it), epochs=20, verbose=1) model.save("my_model.h5") torch.cuda.set_device(0) train_cnn_model() 将上述代码的训练过程绘图

最新推荐

recommend-type

基于OpenGL的C语言的魔方项目.zip

C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。在编写C程序时,需要注意变量的声明和定义、指针的使用、内存的分配与释放等问题。C语言中常用的数据结构包括: 1. 数组:一种存储同类型数据的结构,可以进行索引访问和修改。 2. 链表:一种存储不同类型数据的结构,每个节点包含数据和指向下一个节点的指针。 3. 栈:一种后进先出(LIFO)的数据结构,可以通过压入(push)和弹出(pop)操作进行数据的存储和取出。 4. 队列:一种先进先出(FIFO)的数据结构,可以通过入队(enqueue)和出队(dequeue)操作进行数据的存储和取出。 5. 树:一种存储具有父子关系的数据结构,可以通过中序遍历、前序遍历和后序遍历等方式进行数据的访问和修改。 6. 图:一种存储具有节点和边关系的数据结构,可以通过广度优先搜索、深度优先搜索等方式进行数据的访问和修改。 这些数据结构在C语言中都有相应的实现方式,可以应用于各种不同的场景。C语言中的各种数据结构都有其优缺点,下面列举一些常见的数据结构的优缺点: 数组: 优点:访问和修改元素的速度非常快,适用于需要频繁读取和修改数据的场合。 缺点:数组的长度是固定的,不适合存储大小不固定的动态数据,另外数组在内存中是连续分配的,当数组较大时可能会导致内存碎片化。 链表: 优点:可以方便地插入和删除元素,适用于需要频繁插入和删除数据的场合。 缺点:访问和修改元素的速度相对较慢,因为需要遍历链表找到指定的节点。 栈: 优点:后进先出(LIFO)的特性使得栈在处理递归和括号匹配等问题时非常方便。 缺点:栈的空间有限,当数据量较大时可能会导致栈溢出。 队列: 优点:先进先出(FIFO)的特性使得
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力

![MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力](https://img-blog.csdnimg.cn/img_convert/3aa5d0402a313c17c3c9ffa85b40f683.png) # 1. MATLAB图像去噪概述 **1.1 图像去噪的重要性** 图像去噪是图像处理中一项至关重要的任务,它旨在从图像中去除不需要的噪声,从而提高图像的质量和可理解性。图像噪声可能来自各种来源,如传感器缺陷、环境干扰和数据传输错误。 **1.2 MATLAB图像去噪的优势** MATLAB是一个强大的技术计算环境,提供了一系列图像去噪算法和工具。MATLA
recommend-type

使用pyrhon编写mapreduce

MapReduce是一种用于处理大规模数据集的编程模型和算法。它通常用于分布式计算环境中,可以高效地处理大量数据并实现并行计算。在Python中,我们可以使用Hadoop Streaming来编写MapReduce程序。 下面是使用Python编写MapReduce的基本步骤: 1. Map阶段: - 编写一个mapper函数,该函数接收输入数据并将其转换为键值对的形式。 - 使用标准输入(sys.stdin)读取输入数据,并使用标准输出(sys.stdout)输出键值对。 2. Reduce阶段: - 编写一个reducer函数,该函数接收来自mapper函数输出的键
recommend-type

ipqc工作总结PPT.pptx

"这是一份关于IPQC(在制品质量控制)的工作总结PPT,涵盖了IPQC的角色定义、工作总结、质量月报、质量提升计划、团队发展计划以及未来展望。" IPQC,全称为InProcess Quality Control,在制品质量控制,是制造过程中至关重要的一个环节。IPQC的主要职责在于通过抽检和检验在制品,确保生产出的产品符合预设的质量标准和客户期望。他们的工作包括但不限于: 1. **质量检验与控制**:对在制品进行定期抽样检验,以确认产品质量是否达标。 2. **环境与设备监控**:检查生产现场的环境条件和设备运行状态,确保符合生产要求。 3. **关键控制点检查**:在生产的关键阶段进行严格检查,及时发现问题。 4. **不合格品管理**:对不合格品进行标识、隔离,并追踪问题的解决过程。 5. **制定检验计划**:根据生产计划和产品标准,制定相应的检验程序和标准。 6. **数据收集与分析**:记录检验数据,通过分析找出潜在问题,提出改善建议。 在工作总结部分,IPQC强调了实时监控生产过程,确保每个环节都符合质量标准。他们定期抽检产品,快速反馈问题,并进行异常分析与改进,防止问题重复出现。此外,IPQC还负责对新员工进行培训,提高团队协作和管理,以提升整体工作效率和质量水平。 在IPQC质量月报中,提到了质量目标的达成情况。虽然目标完成率达到了98%,但仍有2%的差距,主要是由于员工操作失误和质量监控不足造成的。为了改进,IPQC计划加强员工培训,提高操作技能,增强质量意识,并增加检查频率,以更严格地控制产品质量。 对于未来的展望,IPQC可能会进一步强化团队建设,优化工作流程,持续提升产品质量,以达到更高的客户满意度。团队发展计划可能包括更系统的员工培训、更高效的沟通机制以及更有激励性的管理策略。 这份PPT详细呈现了IPQC在确保产品质量、处理异常情况、提高团队绩效等方面的工作内容和挑战,同时也展现了IPQC团队对质量提升和团队发展的持续关注和努力。