对称上三角稀疏矩阵非零元素的一维存储及LU分解法求解的C#代码
时间: 2024-03-24 19:40:05 浏览: 108
以下是对称上三角稀疏矩阵非零元素的一维存储及LU分解法求解的C#代码示例:
```csharp
using System;
namespace SymmetricUpperTriangularSparseMatrix
{
public class Matrix
{
int n;
int[] irow, jcol;
double[] val;
public Matrix(int n, int[] irow, int[] jcol, double[] val)
{
this.n = n;
this.irow = irow;
this.jcol = jcol;
this.val = val;
}
public void LUDecompose(out Matrix L, out Matrix U)
{
int[] il = new int[n + 1];
int[] iu = new int[n + 1];
int[] jl = new int[val.Length];
int[] ju = new int[val.Length];
double[] al = new double[val.Length];
double[] au = new double[val.Length];
for (int i = 0; i < n + 1; i++)
{
il[i] = -1;
iu[i] = -1;
}
for (int k = 0; k < n; k++)
{
il[k] = k;
iu[k] = k;
int ll = -1, lu = -1;
for (int p = irow[k]; p < irow[k + 1]; p++)
{
int j = jcol[p];
if (j < k)
{
if (il[k] == k) il[k] = p;
jl[++ll] = j;
al[ll] = val[p];
}
else if (j == k)
{
if (il[k] == k) il[k] = p;
if (iu[k] == k) iu[k] = p;
al[k] = val[p];
au[k] = 1.0;
}
else
{
ju[++lu] = j;
au[lu] = val[p];
}
}
for (int p = 0; p <= ll; p++)
{
int i = jl[p];
double lki = al[p] / al[k];
for (int q = iu[i]; q <= irow[i + 1] - 1; q++)
{
int j = jcol[q];
if (j > k) break;
int r = j == k ? k : il[k];
if (il[j] < 0)
{
jl[++ll] = j;
al[ll] = -lki * val[q];
il[j] = ll;
}
else
{
al[il[j]] -= lki * val[q];
}
if (il[k] < 0)
{
il[k] = lu + 1;
iu[k + 1] = lu + 1;
ju[++lu] = k;
au[lu] = al[k];
}
au[r] -= lki * au[q];
}
}
}
int[] ilu = new int[n + 1];
int[] jlu = new int[val.Length];
double[] valL = new double[val.Length];
double[] valU = new double[val.Length];
for (int i = 0; i < n + 1; i++)
{
ilu[i] = -1;
}
int cntL = 0, cntU = 0;
for (int i = 0; i < n; i++)
{
for (int p = il[i]; p <= il[i + 1] - 1; p++)
{
int j = jl[p];
if (j < i)
{
jlu[cntL] = j;
valL[cntL] = al[p];
if (ilu[i] < 0) ilu[i] = cntL;
cntL++;
}
else if (j == i)
{
valL[cntL] = 1.0;
if (ilu[i] < 0) ilu[i] = cntL;
cntL++;
}
else
{
jlu[cntU] = j;
valU[cntU] = au[p];
if (ilu[i] < 0) ilu[i] = cntU;
cntU++;
}
}
for (int p = iu[i]; p <= iu[i + 1] - 1; p++)
{
int j = ju[p];
if (j < i)
{
jlu[cntL] = j;
valL[cntL] = al[p];
if (ilu[i] < 0) ilu[i] = cntL;
cntL++;
}
else if (j == i)
{
valL[cntL] = 1.0;
if (ilu[i] < 0) ilu[i] = cntL;
cntL++;
}
else
{
jlu[cntU] = j;
valU[cntU] = au[p];
if (ilu[i] < 0) ilu[i] = cntU;
cntU++;
}
}
}
L = new Matrix(n, ilu, jlu, valL);
U = new Matrix(n, ilu, jlu, valU);
}
public double[] LUSolve(double[] b)
{
Matrix L, U;
LUDecompose(out L, out U);
double[] y = new double[n];
for (int i = 0; i < n; i++)
{
y[i] = b[i];
for (int p = L.irow[i]; p < L.irow[i + 1]; p++)
{
int j = L.jcol[p];
if (j < i) y[i] -= L.val[p] * y[j];
}
}
double[] x = new double[n];
for (int i = n - 1; i >= 0; i--)
{
x[i] = y[i];
for (int p = U.irow[i]; p < U.irow[i + 1]; p++)
{
int j = U.jcol[p];
if (j > i) x[i] -= U.val[p] * x[j];
}
x[i] /= U.val[U.irow[i]];
}
return x;
}
}
class Program
{
static void Main(string[] args)
{
int n = 3;
int[] irow = { 0, 1, 2, 3 };
int[] jcol = { 0, 1, 2, 1, 2, 2 };
double[] val = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
Matrix A = new Matrix(n, irow, jcol, val);
double[] b = { 1.0, 2.0, 3.0 };
double[] x = A.LUSolve(b);
Console.WriteLine("Solution:");
for (int i = 0; i < n; i++)
{
Console.WriteLine(x[i]);
}
}
}
}
```
该代码中定义了一个 Matrix 类,其构造函数输入稀疏矩阵的维数、非零元素的行列下标及值。LUDecompose 方法实现了对称上三角稀疏矩阵的 LU 分解,并输出分解后的 L 和 U 矩阵。LUSolve 方法实现了使用 LU 分解求解线性方程组。最后的 Main 方法给出了一个样例,其输入的稀疏矩阵是一个 $3 \times 3$ 的矩阵,用 LU 分解求解线性方程组。
阅读全文