我想知道,一个基于Stackelberg 博弈停车问题的python代码怎么写
时间: 2024-02-07 14:02:06 浏览: 256
基于Stackelberg博弈的无线定位网络功率分配方案.pdf
对于基于Stackelberg博弈的停车问题,你可以使用Python编写以下代码:
```python
import numpy as np
class ParkingGame:
def __init__(self, num_spots, cost_per_spot):
self.num_spots = num_spots
self.cost_per_spot = cost_per_spot
def play(self, leader_strategy, follower_strategy):
leader_payment = self.cost_per_spot * leader_strategy
follower_payment = self.cost_per_spot * follower_strategy
leader_utility = self.num_spots - leader_strategy
follower_utility = follower_strategy - leader_payment
return leader_payment, follower_payment, leader_utility, follower_utility
# 示例用法
num_spots = 10
cost_per_spot = 5
game = ParkingGame(num_spots, cost_per_spot)
leader_strategy = np.random.randint(0, num_spots+1)
follower_strategy = np.random.randint(0, num_spots+1)
leader_payment, follower_payment, leader_utility, follower_utility = game.play(leader_strategy, follower_strategy)
print("Leader's strategy:", leader_strategy)
print("Follower's strategy:", follower_strategy)
print("Leader's payment:", leader_payment)
print("Follower's payment:", follower_payment)
print("Leader's utility:", leader_utility)
print("Follower's utility:", follower_utility)
```
这段代码创建了一个`ParkingGame`类,它表示了一个停车博弈的场景。在`play`方法中,输入领导者和追随者的策略,计算领导者和追随者的支付、效用等信息。
你可以根据你的具体问题,自定义`ParkingGame`类和相关方法,以适应你的实际需求。
阅读全文