分别用Prim算法与Kruskal算法求最小树的代码
时间: 2023-12-14 13:50:19 浏览: 100
Prim算法与Kruskal算法求最小生成树
4星 · 用户满意度95%
Prim算法:
```python
def prim(graph):
"""
:param graph: 图,使用邻接矩阵表示
:return: 最小生成树的边集合,使用列表存储
"""
# 初始化
num_vertices = len(graph)
INF = float('inf')
min_cost = [INF] * num_vertices
visited = [False] * num_vertices
parent = [-1] * num_vertices
min_cost[0] = 0
# 遍历所有节点
for i in range(num_vertices):
# 找到未访问过的最小权值的节点
u = -1
for j in range(num_vertices):
if not visited[j] and (u == -1 or min_cost[j] < min_cost[u]):
u = j
visited[u] = True
# 更新与节点u相邻的节点的权值
for v in range(num_vertices):
if graph[u][v] != INF and not visited[v] and graph[u][v] < min_cost[v]:
min_cost[v] = graph[u][v]
parent[v] = u
# 构建最小生成树的边集合
edges = []
for i in range(1, num_vertices):
edges.append((parent[i], i))
return edges
```
Kruskal算法:
```python
class DisjointSet:
def __init__(self, n):
self.parent = list(range(n))
self.rank = [0] * n
def find(self, x):
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x])
return self.parent[x]
def union(self, x, y):
root_x, root_y = self.find(x), self.find(y)
if root_x == root_y:
return False
if self.rank[root_x] < self.rank[root_y]:
self.parent[root_x] = root_y
elif self.rank[root_x] > self.rank[root_y]:
self.parent[root_y] = root_x
else:
self.parent[root_y] = root_x
self.rank[root_x] += 1
return True
def kruskal(graph):
"""
:param graph: 图,使用列表存储所有边
:return: 最小生成树的边集合,使用列表存储
"""
# 初始化
num_vertices = len(set([v for e in graph for v in e]))
disjoint_set = DisjointSet(num_vertices)
edges = []
min_cost = 0
# 将图中所有边按照权值从小到大排序
graph.sort(key=lambda x: x[2])
# 遍历所有边
for e in graph:
u, v, weight = e
if disjoint_set.union(u, v):
edges.append((u, v))
min_cost += weight
return edges
```
注意:这里的图输入格式不同,Prim算法使用邻接矩阵表示,Kruskal算法使用边的列表表示。
阅读全文