R语言中Arima-Grach模型完整代码
时间: 2024-03-31 15:12:28 浏览: 150
基于Arima的单变量时间序列预测模型.完整代码+数据 可直接运行
5星 · 资源好评率100%
ARIMA-GRACH模型是一种基于ARIMA模型的时间序列预测模型。下面是R语言中实现ARIMA-GRACH模型的完整代码:
```R
# 加载所需的包
library(forecast)
# 读入数据
data <- read.csv("data.csv")
# 将数据转换为时间序列对象
ts_data <- ts(data[,2], start = c(2010,1), frequency = 12)
# 划分训练集和测试集
train_data <- window(ts_data, end = c(2018,12))
test_data <- window(ts_data, start = c(2019,1))
# ARIMA模型拟合
arima_model <- auto.arima(train_data)
# GRACH模型拟合
grach_model <- grangertest(train_data, k = 12, p = 12)
# 预测并评估
arima_forecast <- forecast(arima_model, h = 12)
grach_forecast <- predict(grach_model$fit, n.ahead = 12)
# 计算RMSE
arima_rmse <- sqrt(mean((arima_forecast$mean - test_data)^2))
grach_rmse <- sqrt(mean((grach_forecast$pred - test_data)^2))
# 绘制预测结果图
plot(test_data, type = "l", main = "ARIMA-GRACH Model Forecast")
lines(arima_forecast$mean, col = "red")
lines(grach_forecast$pred, col = "blue")
# 输出RMSE值
cat("ARIMA Model RMSE: ", arima_rmse, "\n")
cat("GRACH Model RMSE: ", grach_rmse, "\n")
```
其中,`data.csv`是存储时间序列数据的CSV文件,第二列为时间序列的值。首先,我们将数据读入并转换为时间序列对象,然后将数据划分为训练集和测试集。接着,我们使用`auto.arima`函数拟合ARIMA模型,并使用`grangertest`函数拟合GRACH模型。最后,我们使用`forecast`函数对两个模型进行预测,并计算RMSE值。最终,我们绘制预测结果图,并输出RMSE值。
阅读全文