时间序列中基于python的ARIMA-GARCH模型预测代码
时间: 2024-01-06 13:03:40 浏览: 333
时间序列预测讲义(ARIMA&LSTM;)及python代码
5星 · 资源好评率100%
下面是一个简单的基于Python的ARIMA-GARCH模型预测代码示例:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.arima_model import ARIMA
import arch
# 读取数据
data = pd.read_csv('data.csv', parse_dates=['date'], index_col='date')
# 绘制时序图
plt.plot(data)
plt.show()
# 拆分训练集和测试集
train_data = data['2010-01-01':'2017-12-31']
test_data = data['2018-01-01':]
# ARIMA模型拟合
model = ARIMA(train_data, order=(1, 1, 1))
model_fit = model.fit(disp=0)
print(model_fit.summary())
# 预测
predictions = model_fit.forecast(steps=len(test_data))[0]
# 绘制预测结果
plt.plot(test_data)
plt.plot(predictions, color='red')
plt.show()
# GARCH模型拟合
residuals = test_data['y'] - predictions
garch = arch.arch_model(residuals, p=1, q=1)
garch_fit = garch.fit()
print(garch_fit.summary())
# GARCH模型预测
garch_predictions = garch_fit.forecast(horizon=len(test_data))
garch_predictions = np.sqrt(garch_predictions.variance.values[-1, :])
plt.plot(test_data)
plt.plot(predictions, color='red')
plt.plot(predictions + garch_predictions, color='green')
plt.plot(predictions - garch_predictions, color='green')
plt.show()
```
代码中首先读取数据,并绘制了数据的时序图。然后将数据拆分成训练集和测试集,并使用ARIMA模型拟合训练集数据。接着进行预测,并绘制预测结果图。最后使用GARCH模型拟合测试集数据的残差,并进行GARCH模型预测。绘制预测结果图时,使用绿色表示预测结果的置信区间。
阅读全文