merged_df = df1.set_index(['m1', 'm2']).\ join(df2.set_index(['m1', 'm2']), on=['m1', 'm2'], how='right', suffixes=('_x', '_y'))代码的问题
时间: 2023-08-06 07:08:25 浏览: 134
这段代码的问题是在 `join` 操作时,使用了 `on` 参数,但是 `df1` 和 `df2` 的索引不同,因此无法按照指定的列进行连接。正确的写法应该是:
```python
merged_df = df1.join(df2, on=['m1', 'm2'], how='right', lsuffix='_x', rsuffix='_y')
```
这里使用 `join` 方法,指定了连接的列,并使用 `lsuffix` 和 `rsuffix` 参数为相同列添加后缀,避免出现重复列名的问题。
相关问题
merged_df = df1.set_index(['m1', 'm2']).\ join(d的问题f2.set_index(['m1', 'm2']), on=['m1', 'm2'], how='right', suffixes=('_x', '_y'))
这是一段 Python 代码,其中使用了 Pandas 库中的两个函数 set_index 和 join。
首先,将 df1 中的两列 m1 和 m2 作为索引,生成一个新的 DataFrame。接着,使用 join 函数,将 f2 中的数据按照 m1 和 m2 列与 df1 中的数据进行合并,使用右连接方式,并在列名后面添加了两个后缀 _x 和 _y,以区分两个 DataFrame 中相同名称的列。合并后的结果存储在 merged_df 变量中。
请解释以下代码,并用数据举例:merged_df = df1.set_index(merge_cols). \ join(df2.set_index(merge_cols), on=merge_cols, how='right', lsuffix='_x', rsuffix='_y')
这段代码的功能是将两个数据框(df1和df2)根据指定的列(merge_cols)进行合并。具体解释如下:
1. `df1.set_index(merge_cols)`:将df1的列设置为索引,这些索引列由merge_cols指定。
2. `df2.set_index(merge_cols)`:将df2的列设置为索引,这些索引列由merge_cols指定。
3. `join()`函数:将两个数据框按照索引进行合并。
4. `on=merge_cols`:指定在哪些列上进行合并,这里使用merge_cols。
5. `how='right'`:指定合并的方式为右连接,即保留df2的全部数据,如果df1中没有与df2匹配的行,则在相应位置填充缺失值。
6. `lsuffix='_x', rsuffix='_y'`:如果合并的两个数据框有相同的列名,为了避免冲突,通过添加后缀_x和_y来区分。
下面是一个示例:
df1:
| col1 | col2 | col3 |
|------|------|------|
| A | B | C |
| D | E | F |
df2:
| col1 | col2 | col4 |
|------|------|------|
| A | B | G |
| H | I | J |
如果merge_cols=['col1', 'col2'],则合并后的结果merged_df为:
| col1 | col2 | col3 | col4 |
|------|------|------|------|
| A | B | C | G |
| H | I | None | J |
在合并过程中,根据merge_cols=['col1', 'col2'],将df2中的数据与df1中的数据进行匹配,缺失的值用None填充。注意,合并结果的列名添加了后缀_x和_y来区分。
阅读全文