train_data, test_data = df.iloc[:train_size], df.iloc[train_size:]
时间: 2024-01-19 15:02:14 浏览: 178
这行代码的作用是将一个DataFrame类型的数据集 df 分成训练集 train_data 和测试集 test_data,其中前 train_size 行为训练集,后面的为测试集。iloc 是 Pandas 提供的一种用于按位置访问 DataFrame 的方法。具体而言,df.iloc[:train_size] 表示选取 df 的前 train_size 行,而 df.iloc[train_size:] 则表示选取 df 的第 train_size 行及其后面的所有行。
相关问题
import pandas as pd from sklearn.model_selection import GroupShuffleSplit df = pd.read_csv('horse_race_data.csv') gss = GroupShuffleSplit(test_size=.40, n_splits=1, \ random_state=7).split(df, groups=df['id']) # 生成训练集和验证集的索引 X_train_inds, X_test_inds = next(gss) train_data= df.iloc[X_train_inds] X_train = train_data.loc[:, ~train_data.columns.isin(['id','rank'])] y_train = train_data.loc[:, train_data.columns.isin(['rank'])] test_data= df.iloc[X_test_inds] X_test = test_data.loc[:, ~test_data.columns.isin(['rank'])] y_test = test_data.loc[:, test_data.columns.isin(['rank'])]
这段代码是使用pandas和sklearn库来处理horse_race_data.csv文件中的数据,并将其划分为训练集和验证集。首先,使用pandas读取csv文件并存储为DataFrame对象df。然后,使用GroupShuffleSplit函数将数据集按照指定的组进行划分,其中test_size参数设置为0.40,表示将40%的数据划分为验证集,n_splits参数设置为1,表示只进行一次划分,random_state参数设置为7,用于生成随机数种子以确保可重复性。接下来,通过调用next函数获取生成的划分索引,将索引分别应用于训练集和验证集,并将特征和标签分开存储。最后,将训练集和验证集的特征和标签分别存储在X_train、y_train、X_test和y_test变量中。
请帮我评估一下,我一共有9000行训练数据,代码如下:def get_data(train_df): train_df = train_df[['user_id', 'behavior_type']] train_df=pd.pivot_table(train_df,index=['user_id'],columns=['behavior_type'],aggfunc={'behavior_type':'count'}) train_df.fillna(0,inplace=True) train_df=train_df.reset_index(drop=True) train_df.columns=train_df.columns.droplevel(0) x_train=train_df.iloc[:,:3] y_train=train_df.iloc[:,-1] type=torch.float32 x_train=torch.tensor(x_train.values,dtype=type) y_train=torch.tensor(y_train.values,dtype=type) print(x_train) print(y_train) return x_train ,y_train x_train,y_train=get_data(train_df) x_test,y_test=get_data(test_df) print(x_test) #创建模型 class Order_pre(nn.Module): def __init__(self): super(Order_pre, self).__init__() self.ln1=nn.LayerNorm(3) self.fc1=nn.Linear(3,6) self.fc2 = nn.Linear(6, 12) self.fc3 = nn.Linear(12, 24) self.fc4 = nn.Linear(24, 1) def forward(self,x): x=self.ln1(x) x=self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) x = nn.functional.relu(x) x = self.fc4(x) return x #定义模型、损失函数和优化器 model=Order_pre() loss_fn=nn.MSELoss() optimizer=torch.optim.SGD(model.parameters(),lr=1) #开始跑数据 for epoch in range(1,50): #预测值 y_pred=model(x_train) #损失值 loss=loss_fn(y_pred,y_train) #反向传播 optimizer.zero_grad() loss.backward() optimizer.step() print('epoch',epoch,'loss',loss) # 开始预测y值 y_test_pred=model(x_test) y_test_pred=y_test_pred.detach().numpy() y_test=y_test.detach().numpy() y_test_pred=pd.DataFrame(y_test_pred) y_test=pd.DataFrame(y_test) dfy=pd.concat([y_test,y_test_pred],axis=1) print(dfy) dfy.to_csv('resulty.csv')
根据你提供的代码,我认为你的模型可能存在一些问题。具体来说:
1. 数据处理部分:你的代码中首先对数据进行了透视操作,然后将数据分成了x_train和y_train两部分。x_train中只包含了前三列数据,而y_train中只包含了最后一列数据。这样处理可能会导致信息的丢失,因为你只考虑了一部分特征。建议你重新考虑数据的处理方式,确保包含了所有重要的特征。
2. 模型设计部分:你的模型是一个四层的神经网络,其中包含了多个线性层和激活函数。然而,你的模型可能过于简单,无法捕捉到数据的复杂性。建议你增加模型的宽度和深度,或者使用更加复杂的神经网络结构,以提高模型的表现。
3. 训练部分:你使用了MSE损失函数和SGD优化器来训练模型。这些选择可能是合理的,但是你的代码中没有对模型进行交叉验证或者其他的调参操作,这可能导致模型过拟合或欠拟合。建议你使用交叉验证或者其他的评估方法,以便更好地评估模型的性能。
综上所述,我建议你重新考虑数据处理、模型设计和训练的方式,以提高模型的表现。
阅读全文