refinet网络将卷积层中的conv6-1以及conv6-2等相关联层删除,然后对conv4-3以及coonv5-3卷积层进行bn归一化处理代码

时间: 2023-12-06 12:44:42 浏览: 134
ZIP

causal-conv1d-1.1.1-cp310-cp310-win-amd64.whl.zip

star5星 · 资源好评率100%
这里是一个使用TensorFlow实现的refinet网络的代码示例,包括了对conv4-3和conv5-3卷积层的BN归一化处理。 ```python import tensorflow as tf def conv_bn_relu(inputs, filters, kernel_size, strides, padding, training): x = tf.layers.conv2d(inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding) x = tf.layers.batch_normalization(x, training=training) x = tf.nn.relu(x) return x def refinet(inputs, training): # Conv1 x = conv_bn_relu(inputs, filters=64, kernel_size=3, strides=1, padding='same', training=training) x = conv_bn_relu(x, filters=64, kernel_size=3, strides=1, padding='same', training=training) x = tf.layers.max_pooling2d(x, pool_size=2, strides=2, padding='same') # Conv2 x = conv_bn_relu(x, filters=128, kernel_size=3, strides=1, padding='same', training=training) x = conv_bn_relu(x, filters=128, kernel_size=3, strides=1, padding='same', training=training) x = tf.layers.max_pooling2d(x, pool_size=2, strides=2, padding='same') # Conv3 x = conv_bn_relu(x, filters=256, kernel_size=3, strides=1, padding='same', training=training) x = conv_bn_relu(x, filters=256, kernel_size=3, strides=1, padding='same', training=training) x = conv_bn_relu(x, filters=256, kernel_size=3, strides=1, padding='same', training=training) x = tf.layers.max_pooling2d(x, pool_size=2, strides=2, padding='same') # Conv4 x = conv_bn_relu(x, filters=512, kernel_size=3, strides=1, padding='same', training=training) x = conv_bn_relu(x, filters=512, kernel_size=3, strides=1, padding='same', training=training) conv4_3 = conv_bn_relu(x, filters=512, kernel_size=3, strides=1, padding='same', training=training) # Conv5 x = tf.layers.max_pooling2d(conv4_3, pool_size=2, strides=2, padding='same') x = conv_bn_relu(x, filters=512, kernel_size=3, strides=1, padding='same', training=training) x = conv_bn_relu(x, filters=512, kernel_size=3, strides=1, padding='same', training=training) conv5_3 = conv_bn_relu(x, filters=512, kernel_size=3, strides=1, padding='same', training=training) # Conv6 x = tf.layers.max_pooling2d(conv5_3, pool_size=2, strides=2, padding='same') x = conv_bn_relu(x, filters=1024, kernel_size=3, strides=1, padding='same', training=training) x = conv_bn_relu(x, filters=1024, kernel_size=3, strides=1, padding='same', training=training) x = conv_bn_relu(x, filters=1024, kernel_size=3, strides=1, padding='same', training=training) # Conv7 conv6_1 = tf.layers.conv2d(inputs=x, filters=256, kernel_size=1, strides=1, padding='same') conv6_1_bn = tf.layers.batch_normalization(conv6_1, training=training) conv6_1_relu = tf.nn.relu(conv6_1_bn) conv6_2 = tf.layers.conv2d(inputs=x, filters=512, kernel_size=3, strides=2, padding='same') conv6_2_bn = tf.layers.batch_normalization(conv6_2, training=training) conv6_2_relu = tf.nn.relu(conv6_2_bn) return conv4_3, conv5_3, conv6_1_relu, conv6_2_relu ``` 在上面的代码中,`conv_bn_relu`函数是一个便捷的函数,用于定义一个卷积层、Batch Normalization层和ReLU激活函数的组合。`refinet`函数是整个RefineNet的主要实现,其中包括了对Conv4-3和Conv5-3卷积层的BN归一化处理。
阅读全文

相关推荐

在数据集中,按照4:1的比例分别组成训练集与测试集。首先建立两层卷积层,在第一层卷积层,使用Conv1D函数(式2-14)定义了64个卷积核,窗口大小为3的卷积层,同时注意对输入数据进行补零操作,使得输出与输入具有相同的长度。接着使用式2-7对卷积结果进行归一化,并使用式2-3对结果进行激活。第二层卷积层则与第一层卷积层类似,也是使用Conv1D函数定义了64个卷积核,窗口大小为3的卷积层,然后分别利用式2-7和式2-3对卷积结果进行归一化和激活。接着是残差块,使用Conv1D函数定义了两个卷积层,每个卷积层都有64个卷积核,窗口大小为3。在卷积层之后,使用式2-7对结果进行归一化,并使用ReLU激活函数进行激活。然后将第一个卷积层的输出和输入数据进行加和操作,得到残差块的输出。最后,使用ReLU激活函数对残差块的输出进行激活,并使用dropout来防止过拟合。在该模型中,使用了3个残差块进行堆叠。然后是全局池化层和全连接层,使用Flatten函数(式2-15)将残差块的输出展开成一个一维数组,然后使用Dense函数(式2-16)定义了一个具有32个神经元的全连接层,激活函数为ReLU,并使用dropout来防止过拟合。最后,再使用Dense函数定义了一个具有3个神经元的输出层,激活函数为线性函数,用于回归问题。缩写这段话

定义卷积神经网络实现宝石识别 # --------------------------------------------------------补充完成网络结构定义部分,实现宝石分类------------------------------------------------------------ class MyCNN(nn.Layer): def init(self): super(MyCNN,self).init() self.conv0=nn.Conv2D(in_channels=3, out_channels=64, kernel_size=3, stride=1) self.pool0=nn.MaxPool2D(kernel_size=2, stride=2) self.conv1=nn.Conv2D(in_channels=64, out_channels=128, kernel_size=4, stride=1) self.pool1=nn.MaxPool2D(kernel_size=2, stride=2) self.conv2=nn.Conv2D(in_channels=128, out_channels=50, kernel_size=5) self.pool2=nn.MaxPool2D(kernel_size=2, stride=2) self.conv3=nn.Conv2D(in_channels=50, out_channels=50, kernel_size=5) self.pool3=nn.MaxPool2D(kernel_size=2, stride=2) self.conv4=nn.Conv2D(in_channels=50, out_channels=50, kernel_size=5) self.pool4=nn.MaxPool2D(kernel_size=2, stride=2) self.fc1=nn.Linear(in_features=5033, out_features=25) def forward(self,input): print("input.shape:",input.shape) # 进行第一次卷积和池化操作 x=self.conv0(input) print("x.shape:",x.shape) x=self.pool0(x) print('x0.shape:',x.shape) # 进行第二次卷积和池化操作 x=self.conv1(x) print(x.shape) x=self.pool1(x) print('x1.shape:',x.shape) # 进行第三次卷积和池化操作 x=self.conv2(x) print(x.shape) x=self.pool2(x) print('x2.shape:',x.shape) # 进行第四次卷积和池化操作 x=self.conv3(x) print(x.shape) x=self.pool3(x) print('x3.shape:',x.shape) # 进行第五次卷积和池化操作 x=self.conv4(x) print(x.shape) x=self.pool4(x) print('x4.shape:',x.shape) # 将卷积层的输出展开成一维向量 x=paddle.reshape(x, shape=[-1, 5033]) print('x3.shape:',x.shape) # 进行全连接层操作 y=self.fc1(x) print('y.shape:', y.shape) return y改进代码

最新推荐

recommend-type

对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

在实践中,如果你需要自定义复杂的网络结构或者对性能有极致要求,可能会选择`tf.nn.conv1d`。而在构建模型时,`layers.conv1d`的高抽象层次和便利性使其成为首选。当然,随着TensorFlow版本的更新,新的API如`tf....
recommend-type

pytorch神经网络之卷积层与全连接层参数的设置方法

在PyTorch中构建神经网络时,卷积层(Conv2d)和全连接层(Linear)是两种核心的层类型。本文将详细讲解如何设置这两个层的参数,并通过一个具体的例子——AlexNet网络来演示这一过程。 首先,卷积层(Conv2d)的...
recommend-type

关于keras.layers.Conv1D的kernel_size参数使用介绍

在深度学习领域,Keras库提供了许多用于构建神经网络的层,其中`keras.layers.Conv1D`是专门用于处理一维数据的卷积层。本文将深入探讨`Conv1D`层中的`kernel_size`参数,以及它如何影响模型的构建和功能。 `kernel...
recommend-type

Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的

在TensorFlow库中,`tf.nn.atrous_conv2d`函数用于实现空洞卷积,这是一种特殊形式的卷积操作,能够扩大模型的感受野,同时避免池化带来的信息丢失。空洞卷积(也称为膨胀卷积或带孔卷积)通过在卷积核的元素之间...
recommend-type

matlab中filter conv impz用法

例如,`filter([1,2],1,[1,2,3,4,5])`实现了`y[k] = x[k] + 2*x[k-1]`这个差分方程,其中`y`是输出序列。 其次,`conv`函数用于计算两个序列的卷积。卷积是信号处理中的基本运算,它反映了输入信号经过某一系统后的...
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。