refinet网络将卷积层中的conv6-1以及conv6-2等相关联层删除,然后对conv4-3以及coonv5-3卷积层进行bn归一化处理代码
时间: 2023-12-06 12:44:42 浏览: 134
causal-conv1d-1.1.1-cp310-cp310-win-amd64.whl.zip
5星 · 资源好评率100%
这里是一个使用TensorFlow实现的refinet网络的代码示例,包括了对conv4-3和conv5-3卷积层的BN归一化处理。
```python
import tensorflow as tf
def conv_bn_relu(inputs, filters, kernel_size, strides, padding, training):
x = tf.layers.conv2d(inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding)
x = tf.layers.batch_normalization(x, training=training)
x = tf.nn.relu(x)
return x
def refinet(inputs, training):
# Conv1
x = conv_bn_relu(inputs, filters=64, kernel_size=3, strides=1, padding='same', training=training)
x = conv_bn_relu(x, filters=64, kernel_size=3, strides=1, padding='same', training=training)
x = tf.layers.max_pooling2d(x, pool_size=2, strides=2, padding='same')
# Conv2
x = conv_bn_relu(x, filters=128, kernel_size=3, strides=1, padding='same', training=training)
x = conv_bn_relu(x, filters=128, kernel_size=3, strides=1, padding='same', training=training)
x = tf.layers.max_pooling2d(x, pool_size=2, strides=2, padding='same')
# Conv3
x = conv_bn_relu(x, filters=256, kernel_size=3, strides=1, padding='same', training=training)
x = conv_bn_relu(x, filters=256, kernel_size=3, strides=1, padding='same', training=training)
x = conv_bn_relu(x, filters=256, kernel_size=3, strides=1, padding='same', training=training)
x = tf.layers.max_pooling2d(x, pool_size=2, strides=2, padding='same')
# Conv4
x = conv_bn_relu(x, filters=512, kernel_size=3, strides=1, padding='same', training=training)
x = conv_bn_relu(x, filters=512, kernel_size=3, strides=1, padding='same', training=training)
conv4_3 = conv_bn_relu(x, filters=512, kernel_size=3, strides=1, padding='same', training=training)
# Conv5
x = tf.layers.max_pooling2d(conv4_3, pool_size=2, strides=2, padding='same')
x = conv_bn_relu(x, filters=512, kernel_size=3, strides=1, padding='same', training=training)
x = conv_bn_relu(x, filters=512, kernel_size=3, strides=1, padding='same', training=training)
conv5_3 = conv_bn_relu(x, filters=512, kernel_size=3, strides=1, padding='same', training=training)
# Conv6
x = tf.layers.max_pooling2d(conv5_3, pool_size=2, strides=2, padding='same')
x = conv_bn_relu(x, filters=1024, kernel_size=3, strides=1, padding='same', training=training)
x = conv_bn_relu(x, filters=1024, kernel_size=3, strides=1, padding='same', training=training)
x = conv_bn_relu(x, filters=1024, kernel_size=3, strides=1, padding='same', training=training)
# Conv7
conv6_1 = tf.layers.conv2d(inputs=x, filters=256, kernel_size=1, strides=1, padding='same')
conv6_1_bn = tf.layers.batch_normalization(conv6_1, training=training)
conv6_1_relu = tf.nn.relu(conv6_1_bn)
conv6_2 = tf.layers.conv2d(inputs=x, filters=512, kernel_size=3, strides=2, padding='same')
conv6_2_bn = tf.layers.batch_normalization(conv6_2, training=training)
conv6_2_relu = tf.nn.relu(conv6_2_bn)
return conv4_3, conv5_3, conv6_1_relu, conv6_2_relu
```
在上面的代码中,`conv_bn_relu`函数是一个便捷的函数,用于定义一个卷积层、Batch Normalization层和ReLU激活函数的组合。`refinet`函数是整个RefineNet的主要实现,其中包括了对Conv4-3和Conv5-3卷积层的BN归一化处理。
阅读全文