去除refinedet网络的conv6-1,conv6-2卷积层,对conv4-3以及conv5-3进行BN归一化处理代码
时间: 2023-07-16 10:13:58 浏览: 102
假设你使用的是PyTorch框架,以下是可能的代码实现:
```python
import torch.nn as nn
class RefineDet(nn.Module):
def __init__(self, num_classes):
super(RefineDet, self).__init__()
# 网络结构代码省略...
# 去除 conv6-1 和 conv6-2
self.loc_layers = nn.ModuleList([
nn.Conv2d(512, 4 * num_anchors, kernel_size=3, padding=1),
nn.Conv2d(1024, 6 * num_anchors, kernel_size=3, padding=1),
nn.Conv2d(512, 6 * num_anchors, kernel_size=3, padding=1),
nn.Conv2d(256, 6 * num_anchors, kernel_size=3, padding=1),
nn.Conv2d(256, 4 * num_anchors, kernel_size=3, padding=1),
nn.Conv2d(256, 4 * num_anchors, kernel_size=3, padding=1)
])
self.conf_layers = nn.ModuleList([
nn.Conv2d(512, 2 * num_anchors, kernel_size=3, padding=1),
nn.Conv2d(1024, 3 * num_anchors, kernel_size=3, padding=1),
nn.Conv2d(512, 3 * num_anchors, kernel_size=3, padding=1),
nn.Conv2d(256, 3 * num_anchors, kernel_size=3, padding=1),
nn.Conv2d(256, 2 * num_anchors, kernel_size=3, padding=1),
nn.Conv2d(256, 2 * num_anchors, kernel_size=3, padding=1)
])
# 对 conv4-3 和 conv5-3 进行 BN 归一化处理
self.conv4_3_norm = nn.BatchNorm2d(512)
self.conv5_3_norm = nn.BatchNorm2d(512)
def forward(self, x):
# 网络前向传播代码省略...
# 对 conv4-3 和 conv5-3 进行 BN 归一化处理
conv4_3_norm = self.conv4_3_norm(x[23])
conv5_3_norm = self.conv5_3_norm(x[-2])
# 网络后续处理代码省略...
```
需要注意的是,去除 conv6-1 和 conv6-2 两个卷积层后,网络的输出通道数会发生变化,需要相应地修改后续的定位层和分类层。同时,对 conv4-3 和 conv5-3 进行 BN 归一化处理时,需要根据网络结构中这两个卷积层的索引进行选择。
阅读全文