Input size Operation Stride Padding Shortcut 112×112×3 Conv 5×5×64 2 2 BN,Relu 56×56×64 Max pool 3×3 2 1 28×28×64 3×3×128 2 1 Conv 1×1×128 Stride=2 BN,Relu 14×14×128 Conv 3×3×256 1 1 Conv 1×1×256 Stride=1 BN,Relu 14×14×256 Conv 3×3×128 1 1 Conv 1×1×128 Stride=1
时间: 2023-03-04 19:40:55 浏览: 131
这段文字描述的是一个卷积神经网络的结构,下面是对其中的一些术语的解释:
- 输入大小:112×112×3,表示输入图像的大小为112×112像素,颜色通道数为3。
- 卷积层:Conv 5×5×64,表示使用64个大小为5×5的卷积核进行卷积操作。
- 步长:Stride=2,表示卷积操作时每次移动2个像素。
- 填充:Padding=2,表示在输入图像的边缘填充2个像素,用于保持输出大小与输入大小一致。
- 批归一化:BN,表示对每个批次的数据进行归一化处理,以加速神经网络的训练。
- 激活函数:Relu,表示使用修正线性单元作为激活函数,以增强网络的非线性拟合能力。
- 最大池化层:Max pool 3×3,表示使用3×3的窗口进行最大池化操作。
- 快捷连接:Shortcut,表示将输入直接加到输出上,用于增强神经网络的信息流动。
总体来说,这个神经网络结构是一个比较常见的卷积神经网络,包括卷积层、批归一化、激活函数、最大池化层等基本组件,通过堆叠多个这样的层来实现图像的特征提取和分类。
相关问题
expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = nn.ReLU()(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = nn.ReLU()(out) return out其中的expansion是什么意思
在给定的代码中,`expansion` 是一个类变量,表示 BasicBlock 中通道数的扩展倍数。它用于确定在残差连接中使用的卷积层的输出通道数。
在 ResNet 等架构中,残差块通常会对输入进行降采样(stride 不等于 1)或者通道数进行扩展。当输入通道数与输出通道数不匹配时,需要使用一个额外的 1x1 卷积层将输入通道数扩展到相应的输出通道数。`expansion` 变量就是用来控制这个扩展倍数的。
在代码中的这段逻辑中,如果 stride 不等于 1 或者输入通道数 `in_planes` 不等于 `self.expansion * planes`,则会创建一个包含一个 1x1 卷积层和一个批归一化层的 `shortcut` 模块,用于将输入通道数进行扩展。
总之,`expansion` 变量用于确定残差块中卷积层通道数的扩展倍数,并控制残差连接中输入通道数与输出通道数的匹配。
请分析这段代码class GhostBottleneck(nn.Module): """ Ghost bottleneck w/ optional SE""" def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3, stride=1, act_layer=nn.ReLU, se_ratio=0.): super(GhostBottleneck, self).__init__() has_se = se_ratio is not None and se_ratio > 0. self.stride = stride # Point-wise expansion self.ghost1 = GhostModule(in_chs, mid_chs, relu=True) # Depth-wise convolution if self.stride > 1: self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size - 1) // 2, groups=mid_chs, bias=False) self.bn_dw = nn.BatchNorm2d(mid_chs) # Squeeze-and-excitation if has_se: self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio) else: self.se = None # Point-wise linear projection self.ghost2 = GhostModule(mid_chs, out_chs, relu=False) # shortcut if (in_chs == out_chs and self.stride == 1): self.shortcut = nn.Sequential() else: self.shortcut = nn.Sequential( nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size - 1) // 2, groups=in_chs, bias=False), nn.BatchNorm2d(in_chs), nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_chs), ) def forward(self, x): residual = x # 1st ghost bottleneck x = self.ghost1(x) # Depth-wise convolution if self.stride > 1: x = self.conv_dw(x) x = self.bn_dw(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # 2nd ghost bottleneck x = self.ghost2(x) x += self.shortcut(residual) return x
这段代码定义了一个名为GhostBottleneck的类,继承自nn.Module。该类实现了一个带有可选Squeeze-and-excitation (SE)的Ghost bottleneck。
在初始化方法中,它接受一些参数,包括输入通道数(in_chs)、中间通道数(mid_chs)、输出通道数(out_chs)、深度卷积核大小(dw_kernel_size)、步长(stride)、激活函数(act_layer)和SE比率(se_ratio)。它首先判断是否需要SE操作,并保存步长。然后,它定义了以下组件:
- ghost1: 一个GhostModule,用于进行点卷积扩展,将输入通道数扩展到中间通道数。
- conv_dw和bn_dw: 如果步长大于1,则定义了一个深度卷积层和对应的批归一化层,用于进行深度卷积操作。
- se: 如果需要SE操作,则定义了一个SqueezeExcite模块,用于进行Squeeze-and-excitation操作。
- ghost2: 一个GhostModule,用于将中间通道数缩减到输出通道数。
- shortcut: 根据输入通道数和输出通道数以及步长的不同情况,定义了不同的shortcut结构。如果输入通道数等于输出通道数且步长为1,则shortcut为空;否则,shortcut由一系列卷积层和批归一化层组成。
在前向传播方法中,首先保存输入的残差,然后按照以下顺序进行操作:
- 使用ghost1进行第一个ghost bottleneck操作,将输入x转换为中间特征x。
- 如果步长大于1,则使用conv_dw和bn_dw进行深度卷积操作。
- 如果需要SE操作,则使用se进行Squeeze-and-excitation操作。
- 使用ghost2进行第二个ghost bottleneck操作,将中间特征x转换为输出特征x。
- 将残差与shortcut结果相加得到最终输出x。
该GhostBottleneck类实现了一种特殊的残差块结构,通过使用GhostModule和深度卷积、SE等操作,实现了通道数的扩展和缩减,并在残差连接中处理了不同通道数和步长的情况。这种结构常用于一些深度学习模型中的卷积层。
阅读全文