请帮我写出基于keras实现resnet34的代码
时间: 2024-03-27 21:39:00 浏览: 133
基于keras resnet34的车牌识别项目.zip
好的,下面是基于 Keras 实现 ResNet34 的代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, Add, Flatten, Dense
from tensorflow.keras.models import Model
def conv_bn_relu(inputs, filters, kernel_size, strides):
x = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding='same')(inputs)
x = BatchNormalization()(x)
x = Activation('relu')(x)
return x
def identity_block(inputs, filters):
x = conv_bn_relu(inputs, filters=filters, kernel_size=3, strides=1)
x = conv_bn_relu(x, filters=filters, kernel_size=3, strides=1)
x = Add()([x, inputs])
x = Activation('relu')(x)
return x
def conv_block(inputs, filters, strides):
x = conv_bn_relu(inputs, filters=filters, kernel_size=3, strides=strides)
x = conv_bn_relu(x, filters=filters, kernel_size=3, strides=1)
shortcut = Conv2D(filters=filters, kernel_size=1, strides=strides)(inputs)
shortcut = BatchNormalization()(shortcut)
x = Add()([x, shortcut])
x = Activation('relu')(x)
return x
def resnet34(input_shape, num_classes):
inputs = Input(shape=input_shape)
x = conv_bn_relu(inputs, filters=64, kernel_size=7, strides=2)
x = MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
x = conv_block(x, filters=64, strides=1)
x = identity_block(x, filters=64)
x = identity_block(x, filters=64)
x = conv_block(x, filters=128, strides=2)
x = identity_block(x, filters=128)
x = identity_block(x, filters=128)
x = identity_block(x, filters=128)
x = conv_block(x, filters=256, strides=2)
x = identity_block(x, filters=256)
x = identity_block(x, filters=256)
x = identity_block(x, filters=256)
x = identity_block(x, filters=256)
x = identity_block(x, filters=256)
x = conv_block(x, filters=512, strides=2)
x = identity_block(x, filters=512)
x = identity_block(x, filters=512)
x = Flatten()(x)
outputs = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=inputs, outputs=outputs)
return model
```
这个代码实现了基于 Keras 的 ResNet34 模型。其中,我们定义了 `conv_bn_relu` 函数来方便地实现卷积层、BN 层和 ReLU 激活函数的组合。`identity_block` 函数实现了 ResNet 的残差块,`conv_block` 函数实现了 ResNet 的卷积块。最后,我们使用这些函数来搭建 ResNet34 模型。
阅读全文