class AveSupPixPoolFunction(torch.autograd.Function): @staticmethod def forward(ctx, img, spx): spx = spx.to(torch.int) K = spx.max()+1 assert(spx.size()[-2:]==img.size()[-2:]) out = spx_gpu.ave_forward(img, spx, K) outputs, pool_size = out outputs /= pool_size.to(torch.float) ctx.save_for_backward(pool_size, img, spx, K) return outputs @staticmethod def backward(ctx, grad_output): pool_size, img, spx, K = ctx.saved_tensors grad_input = grad_output / pool_size.to(torch.float) grad_input = SupPixUnpool()(grad_input, spx.long()) return grad_input, torch.zeros_like(spx) class AveSupPixPool(torch.nn.Module): def __init__(self): super(AveSupPixPool, self).__init__() def forward(self, img, spx): return AveSupPixPoolFunction.apply(img, spx)
时间: 2024-05-04 20:18:26 浏览: 79
这是一个 PyTorch 中自定义的超像素平均池化函数及其对应的模块。
该函数实现了超像素平均池化操作,输入参数为原始图像和超像素分割结果,返回值为池化后的结果。
其中,`forward` 函数实现了前向传播,使用了 PyTorch 的自动求导机制;`backward` 函数实现了后向传播,即求解梯度。
`AveSupPixPool` 类将 `AveSupPixPoolFunction` 封装成了 PyTorch 的模块,方便调用。
需要注意的是,该代码中使用了 `spx_gpu.ave_forward` 函数,这是一个自定义的 CUDA 函数,用于在 GPU 上进行超像素平均池化操作。如果要使用该代码,需要先编译 `spx_gpu.ave_forward` 函数并加载到 PyTorch 中。
另外,该代码中的超像素平均池化操作是基于超像素分割结果进行操作的,如果没有进行超像素分割,需要先对原始图像进行超像素分割操作,然后再使用该函数进行池化操作。
相关问题
讲解: class LBSign(torch.autograd.Function): @staticmethod def forward(ctx, input): return torch.sign(input) @staticmethod def backward(ctx, grad_output): return grad_output.clamp_(-1, 1)
我是ChatGPT,是由OpenAI训练的大型语言模型。这里的LBSign是一种将输入张量的符号函数映射到输出张量的函数,在前向传播中,它将每个输入元素的符号映射到输出张量,而在反向传播中,它将梯度限制为-1到1之间。
class PoolFunc(torch.autograd.Function): @staticmethod def forward(ctx, inputs, kernel): outputs = torch.nn.functional.avg_pool2d(inputs, kernel) ctx.save_for_backward(outputs, torch.tensor(inputs.shape), torch.tensor(kernel)) return outputs @staticmethod def backward(ctx, grad_delta): (outputs, input_shape, kernel) = ctx.saved_tensors kernel = kernel.tolist() outputs = 1 / outputs outputs[outputs > kernel[0] * kernel[1] + 1] = 0 outputs /= kernel[0] * kernel[1] grad = torch.nn.functional.interpolate(grad_delta * outputs, size=input_shape.tolist()[2:]) return grad, None
这是一个使用 PyTorch 实现的自定义池化函数 PoolFunc,包括前向传播和反向传播的实现。
在前向传播中,输入 inputs 和池化核 kernel 作为参数,使用 PyTorch 提供的 avg_pool2d 函数进行平均池化操作,并将输出、输入形状和池化核保存在上下文对象 ctx 中,以备反向传播使用。
在反向传播中,首先从 ctx 中取出保存的输出、输入形状和池化核,将池化核转换为列表形式,然后计算输出的倒数,将大于池化核大小加一的部分置零,并除以池化核大小,得到梯度系数。接下来,使用 PyTorch 提供的 interpolate 函数将梯度 delta 与梯度系数相乘,并插值回输入形状的大小,得到输入的梯度 grad。
最后,返回输入的梯度 grad 和 None(因为池化核不需要更新)。
阅读全文