层次聚类python代码

时间: 2023-07-22 15:06:25 浏览: 167
以下是用Python实现层次聚类的基本代码: ```python import numpy as np from scipy.cluster.hierarchy import dendrogram, linkage import matplotlib.pyplot as plt # 构造数据 X = np.array([[1,2],[1,4],[1,0],[4,2],[4,4],[4,0]]) labels = ['A', 'B', 'C', 'D', 'E', 'F'] # 层次聚类 Z = linkage(X, method='ward', metric='euclidean') # 绘制树状图 fig = plt.figure(figsize=(8, 5)) dn = dendrogram(Z, labels=labels) plt.show() ``` 其中,`X`为样本数据,`labels`为每个样本的标签。`linkage`函数用于层次聚类,`method`参数表示聚类方法,`metric`参数表示距离度量方法。`dendrogram`函数用于绘制树状图。运行上述代码,即可得到一个树状图。
相关问题

层次聚类算法python代码

层次聚类算法的Python代码可以使用scipy库中的cluster.hierarchy模块来实现。下面是一个简单的层次聚类算法的Python代码示例: ```python from scipy.cluster.hierarchy import dendrogram, linkage import numpy as np import matplotlib.pyplot as plt # 生成随机数据 np.random.seed(4711) a = np.random.multivariate_normal([10, 0], [[3, 1], [1, 4]], size=[100,]) b = np.random.multivariate_normal([0, 20], [[3, 1], [1, 4]], size=[50,]) X = np.concatenate((a, b),) # 层次聚类 Z = linkage(X, 'ward') # 绘制层次树 plt.figure(figsize=(25, 10)) plt.title('Hierarchical Clustering Dendrogram') plt.xlabel('sample index') plt.ylabel('distance') dendrogram(Z, leaf_rotation=90., leaf_font_size=8.) plt.show() ``` 这段代码首先生成了一些随机数据,然后使用`linkage`函数进行层次聚类,最后使用`dendrogram`函数绘制层次树。你可以根据自己的需求修改数据和参数来实现不同的层次聚类算法。

层次聚类分析python代码

层次聚类分析是一种常用的聚类方法,它可以将数据集中的样本分成不同的类别。下面是一个简单的层次聚类分析的Python代码实现: ```python import numpy as np from scipy.cluster.hierarchy import dendrogram, linkage import matplotlib.pyplot as plt # 生成随机数据 np.random.seed(4711) a = np.random.multivariate_normal([10, 0], [[3, 1], [1, 4]], size=[100,]) b = np.random.multivariate_normal([0, 20], [[3, 1], [1, 4]], size=[50,]) X = np.concatenate((a, b),) # 生成距离矩阵 Z = linkage(X, 'ward') # 绘制树状图 plt.figure(figsize=(25, 10)) plt.title('Hierarchical Clustering Dendrogram') plt.xlabel('sample index') plt.ylabel('distance') dendrogram(Z, leaf_rotation=90., leaf_font_size=8.) plt.show() ``` 这段代码首先生成了一个随机数据集,然后使用`linkage`函数生成距离矩阵,最后使用`dendrogram`函数绘制树状图。其中,`ward`表示使用Ward方差最小化算法进行聚类。 如果你想对自己的数据进行层次聚类分析,只需要将数据集替换掉上面的随机数据即可。

相关推荐

最新推荐

recommend-type

Python实现简单层次聚类算法以及可视化

主要为大家详细介绍了Python实现简单层次聚类算法以及可视化,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

python实现鸢尾花三种聚类算法(K-means,AGNES,DBScan)

主要介绍了python实现鸢尾花三种聚类算法(K-means,AGNES,DBScan),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

node-v0.10.9-sunos-x86.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

ARL-master-wade.zip

ARL-master-wade.zip
recommend-type

paralleled FLUS_V2.4.zip

paralleled FLUS_V2.4.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。