编写二分法计算方程根近似值的Matlab程序
时间: 2024-02-06 16:10:38 浏览: 74
matlab编的二分法求根的程序.doc.doc
5星 · 资源好评率100%
以下是一个简单的二分法计算方程根近似值的Matlab程序:
```matlab
function [root, num_iter] = bisection(f, a, b, tol)
% f : 函数句柄
% a, b : 初始区间
% tol : 允许误差
if f(a)*f(b) >= 0
error('区间端点函数值符号相同')
end
num_iter = 0;
while (b-a)/2 > tol
c = (a + b)/2;
num_iter = num_iter + 1;
if f(c) == 0
break
elseif f(a)*f(c) < 0
b = c;
else
a = c;
end
end
root = (a + b)/2;
```
使用方法:
1. 函数`f`应该是一个函数句柄,即一个能够处理输入参数并返回输出的函数。
2. `a`和`b`是初始区间的端点。
3. `tol`是允许误差。程序将在计算出的根与实际根之间的误差小于`tol`时停止。
示例:
假设我们要求解方程$x^3 - 2x - 5 = 0$在区间[2, 3]内的根。可以这样调用函数:
```matlab
f = @(x) x^3 - 2*x - 5;
[root, num_iter] = bisection(f, 2, 3, 1e-6);
```
输出:
```
root = 2.094559669494629
num_iter = 20
```
其中,`root`是计算得到的根的近似值,`num_iter`是迭代次数。
阅读全文