基于自平衡车的二级倒立摆LQR控制系统
时间: 2023-05-25 14:06:56 浏览: 130
自平衡车是一种具有双轮车体和水平姿态保持能力的智能机器人,具有广泛的应用前景。其控制系统主要包括运动控制和姿态控制两个部分,其中姿态控制是关键。在姿态控制中,二级倒立摆是一个经典的动态系统,是自平衡车姿态控制的基础。因此,本文提出了一种基于自平衡车的二级倒立摆LQR控制系统。
LQR控制是一种优化控制方法,是一种经典的线性控制方法。其基本思想是通过权重矩阵Q和R来优化控制效果,将系统状态从当前状态调整到期望状态。在自平衡车的姿态控制中,LQR控制可以用于设计控制器,控制车身的前后倾斜角度,使其保持稳定。
在本文中,我们采用了二级倒立摆模型来建立自平衡车的姿态控制系统。该系统包括两个质量、弹性、摩擦等属性的刚性杆,上杆代表车身,下杆代表车轮。根据牛顿力学定律,可以得到二级倒立摆的动态方程:
$$m_1l_1\ddot{\theta_1}-(m_1+m_2)gl_1\sin\theta_1+m_2l_1l_2\ddot{\theta_2}\cos(\theta_1-\theta_2)-(m_1+m_2)l_1l_2\dot{\theta_2}^2\sin(\theta_1-\theta_2)=u_1$$
$$m_2l_2\ddot{\theta_2}-m_2gl_2\sin\theta_2+m_2l_1l_2\ddot{\theta_1}\cos(\theta_1-\theta_2)+m_2l_1l_2\dot{\theta_1}^2\sin(\theta_1-\theta_2)=u_2$$
其中,$m_1$和$m_2$分别是车身和车轮的质量,$l_1$和$l_2$分别是车轴和车轮轴长度,$g$是重力加速度,$\theta_1$和$\theta_2$是车身和车轮的倾角,$u_1$和$u_2$分别是两个电机的输入。
根据动态方程可以设计状态反馈控制器,将状态向量$x=[\theta_1,\theta_2,\dot{\theta_1},\dot{\theta_2}]$作为反馈变量,控制输入为$u=[u_1,u_2]$,可以得到如下状态反馈矩阵:
$$\dot{x}=Ax+Bu$$
$$A=\begin{bmatrix}0&0&1&0\\0&0&0&1\\-m_2g/l_1&-m_2g/l_2&0&0\\(m_1+m_2)g/l_1&-(m_1+m_2)g/l_2&0&0\end{bmatrix},B=\begin{bmatrix}0&0\\0&0\\1/m_1&0\\0&1/m_2\end{bmatrix}$$
LQR控制利用二次型函数来描述控制系统的性能,即寻求一个状态反馈矩阵K,使得二次性能指标最小。在本文中,我们将控制效果的重点放在车体的倾斜角,因此Q矩阵对应的权重主要放在$\theta_1$和$\theta_2$上,而R矩阵对应的权重主要放在电机输入量上,即$u_1$和$u_2$。
$$J=\int_{0}^{\inf}(x^TQx+u^TRu)dt$$
根据LQR控制的方法,可以求解最优反馈系数矩阵K:
$$K=-(B^TPB+R)^{-1}B^TPA$$
其中P为代数矩阵,是利用Lyapunov方程求解的。
最终,将求解得到的K值用于控制系统的反馈控制器中,即可实现对车体的姿态控制。
本文的二级倒立摆LQR控制系统可以作为自平衡车姿态控制方案的一个基础,能够实现对车体的前后倾斜角度的控制,为自平衡车的应用提供了更加完整和系统的控制方案。
阅读全文