python实现提取图像矩特征、HOG特征、LBP特征
时间: 2023-10-03 17:03:28 浏览: 132
1. 提取图像矩特征
图像矩(Image Moment)是图像处理中一种基本的形状描述方法,它可以用来描述图像的几何特征和灰度特征。图像矩特征包括中心矩、标准化中心矩、Hu矩等。
下面是使用OpenCV库提取图像矩特征的代码示例:
```python
import cv2
# 读取图像
img = cv2.imread('test.jpg')
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 计算图像矩
m = cv2.moments(gray)
# 计算中心矩
cx = int(m['m10'] / m['m00'])
cy = int(m['m01'] / m['m00'])
# 计算标准化中心矩
nu20 = m['mu20'] / m['m00']
nu02 = m['mu02'] / m['m00']
nu11 = m['mu11'] / m['m00']
# 计算Hu矩
hu = cv2.HuMoments(m)
```
2. 提取HOG特征
HOG(Histogram of Oriented Gradients)特征是一种用于图像识别和检测的特征描述子,它可以通过计算图像中每个像素点的梯度方向和大小,进而得到图像的特征向量。
下面是使用OpenCV库提取HOG特征的代码示例:
```python
import cv2
# 读取图像
img = cv2.imread('test.jpg')
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 计算HOG特征
winSize = (64, 64)
blockSize = (16, 16)
blockStride = (8, 8)
cellSize = (8, 8)
nbins = 9
hog = cv2.HOGDescriptor(winSize, blockSize, blockStride, cellSize, nbins)
feat = hog.compute(gray)
```
3. 提取LBP特征
LBP(Local Binary Pattern)特征是一种用于图像分类和识别的局部纹理特征描述子,它可以通过对图像中每个像素点的局部区域进行二值化处理,得到一个二进制序列,并将该序列转换为十进制数作为该像素点的LBP特征值。
下面是使用OpenCV库提取LBP特征的代码示例:
```python
import cv2
# 读取图像
img = cv2.imread('test.jpg')
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 计算LBP特征
radius = 1
n_points = 8 * radius
lbp = cv2.ORB_create(n_features=1000, scaleFactor=1.2, nlevels=8, edgeThreshold=15, firstLevel=0, WTA_K=2, patchSize=31, fastThreshold=20)
feat = lbp.detectAndCompute(gray, None)
```
以上是三种常用的图像特征提取方法的Python实现,可以根据需要选择并应用。
阅读全文