def show_ROC(): global X_train,X_test,y_train,y_test model = RandomForestClassifier(max_depth=20, random_state=1234) model.fit(X_train, y_train) score_window = tk.Toplevel(window) score_window.geometry("600x600") score_window.title("随机森林-ROC") y_prod = model.predict_proba(X_test)[:, 1] false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_prod) roc = auc(false_positive_rate, true_positive_rate) # 创建一个新的Figure对象 fig = plt.figure(figsize=(10, 10)) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False plt.plot(false_positive_rate, true_positive_rate, color='red', label='AUC = %0.2f' % roc) plt.legend(loc='lower right') plt.plot([0, 1], [0, 1], linestyle='--') plt.axis('tight') plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.title('ROC') # 添加ROC曲线的通俗解释 roc_explanation = "ROC曲线反映了不同阈值下模型的分类能力,AUC值越高代表模型效果越好。ROC曲线通过计算不同阈值下的真正率和假正率,形成一条曲线来反映模型的分类能力。如果ROC曲线越靠近左上角,则代表模型的性能越好。" plt.text(0.5, -0.1, roc_explanation, ha='center', va='center', fontsize=10, transform=plt.gca().transAxes) # 将Figure对象添加到Canvas对象中,并将Canvas对象添加到tkinter窗口中 canvas = FigureCanvasTkAgg(fig, master=score_window) canvas.draw() canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1)
时间: 2024-03-11 07:45:43 浏览: 67
这段代码是用随机森林算法来绘制ROC曲线,其中使用了sklearn库中的RandomForestClassifier模型来训练数据,并使用predict_proba方法来获取模型输出的概率值。然后使用sklearn库中的roc_curve方法计算出真正率和假正率,并使用sklearn库中的auc方法计算出AUC值。最后使用matplotlib库绘制ROC曲线和添加通俗解释,并使用tkinter库将绘制好的ROC曲线显示在窗口中。
相关问题
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 将字符标签转换为数值标签 le = LabelEncoder() y = le.fit_transform(y) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 构建多分类模型 model = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=42) model.fit(X_train, y_train) # 在测试集上预测每个标签的概率 y_pred = model.predict(X_test) # # 计算micro-averaging的ROC曲线数据 fpr, tpr, _ = roc_curve(y_test, y_pred) roc_auc = auc(fpr, tpr)将此段代码按上述修改
根据上述修改,将代码修改为:
```python
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.multiclass import OneVsRestClassifier
from sklearn.metrics import roc_curve, auc
from sklearn.ensemble import RandomForestClassifier
# 将字符标签转换为数值标签
le = LabelEncoder()
y = le.fit_transform(y)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义分类器和OneVsRest分类器
clf = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=42)
ovr = OneVsRestClassifier(clf)
# 训练分类器
ovr.fit(X_train, y_train)
# 预测测试集数据
y_score = ovr.predict_proba(X_test)
# 计算每个类别的ROC曲线和AUC
fpr, tpr, roc_auc = dict(), dict(), dict()
n_classes = y_bin.shape[1]
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# 计算micro-averaging的ROC曲线数据
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
```
这里使用了`LabelEncoder`将字符标签转换为数值标签,并使用`OneVsRestClassifier`来实现"一对多"策略。最后计算了每个类别的ROC曲线和AUC,并计算了micro-averaging的ROC曲线数据。
# 将数据集拆分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 将字符标签转换为数值标签 le = LabelEncoder() y = le.fit_transform(y) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 构建多分类模型 model = RandomForestClassifier(n_estimators=5, max_depth=5, random_state=42) # 构造随机森林模型 for i in range(model.n_estimators): model.fit(X_train, y_train) # 训练模型 fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(8, 8), dpi=300) plot_tree(model.estimators_[i], filled=True) plt.show() # 训练模型 model.fit(X_train, y_train) # 在测试集上预测每个标签的概率 y_prob = model.predict_proba(X_test) # # 计算micro-averaging的ROC曲线数据 fpr, tpr, _ = roc_curve(y_test.ravel(), y_prob.ravel()) roc_auc = auc(fpr, tpr)根据上面的错误,我该怎么改?
可以考虑使用sklearn中的多类别分类指标来计算模型性能,比如使用classification_report函数输出模型的分类报告。同时,也可以将模型的n_estimators参数设置为1,这样就不需要在循环中训练多个模型。以下是修改后的代码示例:
```
# 将字符标签转换为数值标签
le = LabelEncoder()
y = le.fit_transform(y)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 构建多分类模型
model = RandomForestClassifier(n_estimators=1, max_depth=5, random_state=42)
model.fit(X_train, y_train)
# 在测试集上预测每个标签的概率
y_prob = model.predict_proba(X_test)
# 计算macro-averaging的ROC曲线数据
fpr, tpr, _ = roc_curve(y_test, y_prob, pos_label=None, average='macro')
roc_auc = auc(fpr, tpr)
# 输出分类报告
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred, target_names=le.classes_))
```
注意,这里使用了average='macro'参数来计算宏平均的ROC曲线数据,因为sklearn中的roc_curve函数不支持多类别数据。
阅读全文