forest = RandomForestClassifier(max_depth=6, min_samples_leaf=10, n_estimators=1000) def muti_score(model): # warnings.filterwarnings('ignore') accuracy = cross_val_score(model, X_train, Y_train, scoring='accuracy', cv=5) precision = cross_val_score(model, X_train, Y_train, scoring='precision', cv=5) recall = cross_val_score(model, X_train, Y_train, scoring='recall', cv=5) f1_score = cross_val_score(model, X_train, Y_train, scoring='f1', cv=5) auc = cross_val_score(model, X_train, Y_train, scoring='roc_auc', cv=5) print("准确率:",accuracy.mean()) print("精确率:",precision.mean()) print("召回率:",recall.mean()) print("F1_score:",f1_score.mean()) print("AUC:",auc.mean()) muti_score(forest)
时间: 2023-06-04 17:09:02 浏览: 107
RandomForest-Classification:用随机森林对遥感数据进行分类
4星 · 用户满意度95%
这是一段Python代码,定义了一个名为forest的随机森林分类器模型,其中max_depth表示树的最大深度为6,min_samples_leaf表示最小叶子节点样本数为10,n_estimators表示模型中树的数量为1000。
另外,代码还定义了一个名为muti_score的函数,该函数的参数为一个模型,用于计算模型的多个评价指标。
阅读全文