_cfg()

时间: 2023-06-22 14:25:11 浏览: 57
_cfg()是一种常用于深度学习模型构建的方法,用于生成模型的超参数配置。该方法通常在模型的定义文件中被调用,返回一个包含超参数配置的Python字典。 在使用_cfg()方法时,我们可以传入一些默认的超参数配置,然后根据不同的场景和需求,通过参数覆盖的方式来进行修改和调整。这样可以在不同的实验中快速调整模型的超参数,以达到更好的效果。 例如,我们可以定义一个cfg.py的文件,其中包含一个名为get_cfg()的函数,用于返回模型的超参数配置。如下所示: ``` def get_cfg(): cfg = { 'model': 'ResNet50', 'lr': 0.01, 'batch_size': 32, 'num_classes': 10, 'num_epochs': 100 } return cfg ``` 然后在其他的模块中,我们可以通过如下代码来获取模型的超参数配置: ``` from cfg import get_cfg cfg = get_cfg() cfg['lr'] = 0.001 cfg['batch_size'] = 64 ``` 这样就可以在不同的实验中灵活地调整模型的超参数配置。
相关问题

processor_cfg: type: "processor.pose_demo.inference" gpus: 1 worker_per_gpu: 1 video_file: resource/data_example/skateboarding.mp4 save_dir: "work_dir/pose_demo" detection_cfg: model_cfg: configs/mmdet/cascade_rcnn_r50_fpn_1x.py checkpoint_file: mmskeleton://mmdet/cascade_rcnn_r50_fpn_20e bbox_thre: 0.8 estimation_cfg: model_cfg: configs/pose_estimation/hrnet/pose_hrnet_w32_256x192_test.yaml checkpoint_file: mmskeleton://pose_estimation/pose_hrnet_w32_256x192 data_cfg: image_size: - 192 - 256 pixel_std: 200 image_mean: - 0.485 - 0.456 - 0.406 image_std: - 0.229 - 0.224 - 0.225 post_process: true argparse_cfg: gpus: bind_to: processor_cfg.gpus help: number of gpus video: bind_to: processor_cfg.video_file help: path to input video worker_per_gpu: bind_to: processor_cfg.worker_per_gpu help: number of workers for each gpu skeleton_model: bind_to: processor_cfg.estimation_cfg.model_cfg skeleton_checkpoint: bind_to: processor_cfg.estimation_cfg.checkpoint_file detection_model: bind_to: processor_cfg.detection_cfg.model_cfg detection_checkpoint: bind_to: processor_cfg.detection_cfg.checkpoint_file

根据您提供的配置文件,这是一个用于姿态估计的pose_demo的配置示例。该配置文件包括了处理器配置(processor_cfg)和命令行参数配置(argparse_cfg)。 处理器配置包括以下内容: - type:指定处理器类型为"processor.pose_demo.inference",这可能是一个自定义的处理器类型。 - gpus:指定使用的GPU数量为1。 - worker_per_gpu:指定每个GPU的worker数量为1。 - video_file:指定输入视频的路径为"resource/data_example/skateboarding.mp4"。 - save_dir:指定结果保存的目录路径为"work_dir/pose_demo"。 检测配置(detection_cfg)包括以下内容: - model_cfg:指定检测模型的配置文件路径为"configs/mmdet/cascade_rcnn_r50_fpn_1x.py"。 - checkpoint_file:指定检测模型的checkpoint路径为"mmskeleton://mmdet/cascade_rcnn_r50_fpn_20e"。 - bbox_thre:指定检测目标的边界框阈值为0.8。 估计配置(estimation_cfg)包括以下内容: - model_cfg:指定姿态估计模型的配置文件路径为"configs/pose_estimation/hrnet/pose_hrnet_w32_256x192_test.yaml"。 - checkpoint_file:指定姿态估计模型的checkpoint路径为"mmskeleton://pose_estimation/pose_hrnet_w32_256x192"。 - data_cfg:指定姿态估计模型的数据配置,包括图像尺寸、像素标准化值、图像均值和标准差以及后处理选项。 命令行参数配置(argparse_cfg)包括了一些命令行参数的绑定,用于从命令行传递参数给处理器配置。 例如,您可以使用以下命令行参数来运行pose_demo: ``` python pose_demo.py --gpus 1 --video resource/data_example/skateboarding.mp4 --worker_per_gpu 1 --skeleton_model configs/pose_estimation/hrnet/pose_hrnet_w32_256x192_test.yaml --skeleton_checkpoint mmskeleton://pose_estimation/pose_hrnet_w32_256x192 --detection_model configs/mmdet/cascade_rcnn_r50_fpn_1x.py --detection_checkpoint mmskeleton://mmdet/cascade_rcnn_r50_fpn_20e ``` 请注意,以上仅为示例,具体的使用方式和命令行参数可能会有所不同,具体取决于实际情况。 如果您有进一步的问题,请提供更多细节,我将尽力帮助您。

super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)什么意思

这段代码是在 DynamicDiffusionDetHead 类的初始化方法中调用父类的初始化方法(__init__)。 - super() 是一个内置函数,用于获取当前类的父类(或父类的方法)。 - __init__() 是父类的初始化方法,用于创建父类的实例并进行初始化。 通过调用 super().__init__(),可以将传入 DynamicDiffusionDetHead 的参数传递给父类的初始化方法,以便在初始化 DynamicDiffusionDetHead 实例时,同时初始化父类的相关属性和方法。 具体来说,这段代码将传入 DynamicDiffusionDetHead 的参数传递给父类的初始化方法,并使用相应的参数来初始化父类的 backbone、neck、bbox_head、train_cfg、test_cfg、data_preprocessor 和 init_cfg 等属性。这样就确保了在创建 DynamicDiffusionDetHead 实例时,同时初始化了父类的相关属性和方法,以便在后续的操作中能够正常使用这些属性和方法。

相关推荐

最新推荐

recommend-type

xen配置必备,xen开源虚拟机配置文档xl_cfg 中文

本人开发整理,翻译。_xen虚拟机学习、使用必备,虚拟域管理配置文档;xl_cfg中文。 domU创建、使用、维护,及磁盘配置,网卡配置,vnc,spice,usb等全面配置。
recommend-type

Java swing + socket + mysql 五子棋网络对战游戏FiveChess.zip

五子棋游戏想必大家都非常熟悉,游戏规则十分简单。游戏开始后,玩家在游戏设置中选择人机对战,则系统执黑棋,玩家自己执白棋。双方轮流下一棋,先将横、竖或斜线的5个或5个以上同色棋子连成不间断的一排者为胜。 【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【技术】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。用递归方法解决

这个问题可以使用递归方法解决。下面是一个思路: 1. 定义一个函数,接收三个参数:n、m、i,表示还剩下n个人,每次数到m时出列,当前报数的人是i; 2. 如果n=1,返回i,即最后留下的那个人的编号; 3. 否则,计算出下一个出列的人的编号j,通过递归调用函数解决n-1个人的问题,其结果为k; 4. 如果k < j,即当前i之后出列的人的编号为k,需要将k转换为在i之前出列的编号,返回值为 k+(n-1); 5. 如果k>=j,即当前i之后出列的人的编号为k,返回值为 k-(j-1); 下面是对应的Python代码: ```python def josephus(n, m, i):