train_data = single(permute(reshape(train.data',32,32,3,[]),[2 1 3 4]));什么意思

时间: 2024-05-25 12:16:38 浏览: 111
这行代码将原始的训练数据进行了一些变换,具体解释如下: 1. `train.data'`:将原始训练数据的转置,变成每一行对应一张图片的像素值; 2. `reshape(...,32,32,3,[])`:将上一步得到的向量重新变形成一个四维数组,每个元素对应一张图片,维度为`(32,32,3,图片数量)`,其中`(32,32,3)`表示每张图片的长宽和通道数,`[]`表示最后一维由其他维度自动计算得出; 3. `permute(...,[2 1 3 4])`:将上一步得到的四维数组进行维度置换,将第1维和第2维交换,变成`(32,32,3,图片数量)`的形式。 4. `single(...)`:将上一步得到的数组转换成单精度浮点数类型,以便后续计算。
相关问题

train_data = single(permute(reshape(train.data',32,32,3,[]),[2 1 3 4]));

This line of code is reshaping the input data for a neural network. The `train.data` variable is assumed to be a 4D array with dimensions `32 x 32 x 3 x N`, where `N` is the number of training examples. The `reshape` function is used to reorder the dimensions of this array. It first transposes the array so that the third dimension becomes the first dimension, i.e. `train.data'` has dimensions `N x 3 x 32 x 32`. The `reshape` function then rearranges the dimensions so that the second dimension becomes the first dimension, the first dimension becomes the second dimension, and the third and fourth dimensions are combined into a single dimension. The resulting array has dimensions `32 x 32 x 3 x N`, which is a more suitable format for feeding into a convolutional neural network (CNN), as it allows the network to treat each pixel in the image as a separate input channel. Finally, the `single` function is used to convert the array to single-precision floating point values, which is a common data type used in CNNs. Overall, this line of code is preparing the input data for a CNN by reshaping and converting the data to the appropriate format and data type.

data=xlsread('data_load'); % 按时间排序 load_data = sortrows(data, 1); % 生成训练集和测试集 train_ratio = 0.8; train_size = floor(train_ratio * size(load_data, 1)); train_data = load_data(1:train_size, 2:end); test_data = load_data(train_size+1:end, 2:end); % 数据归一化 train_data_norm = normalize(train_data); test_data_norm = normalize(test_data); % 准备训练数据 X_train = []; Y_train = []; n_steps = 3; % 每个时间步长包含的数据点数 for i = n_steps:size(train_data_norm, 1) X_train = [X_train; train_data_norm(i-n_steps+1:i, :)]; Y_train = [Y_train; train_data_norm(i, :)]; end % 调整训练数据的形状 X_train = permute(reshape(X_train', [], n_steps, size(X_train,1)), [3, 2, 1]); Y_train = permute(reshape(Y_train', [], n_steps, size(Y_train,1)), [3, 2, 1]); % 构建LSTM模型 input_size = size(train_data,2)-1; output_size = size(train_data,2)-1; num_hidden_units = 64; layers = [ ... sequenceInputLayer(input_size) lstmLayer(num_hidden_units,'OutputMode','last') fullyConnectedLayer(output_size) regressionLayer]; % 训练模型 opts = trainingOptions('adam', ... 'MaxEpochs',50, ... 'GradientThreshold',1, ... 'InitialLearnRate',0.01, ... 'LearnRateSchedule','piecewise', ... 'LearnRateDropFactor',0.1, ... 'LearnRateDropPeriod',30, ... 'Verbose',0, ... 'Plots','training-progress'); trained_net = trainNetwork(X_train, Y_train, layers, opts); % 准备测试数据 X_test = []; Y_test = []; for i = n_steps:size(test_data_norm, 1) X_test = [X_test; test_data_norm(i-n_steps+1:i, :)]; Y_test = [Y_test; test_data_norm(i, :)]; end % 调整测试数据的形状 X_test = reshape(X_test, [size(X_test,1), n_steps, size(test_data,2)-1]); Y_test = reshape(Y_test, [size(Y_test,1), size(test_data,2)-1]); % 进行预测 Y_pred = predict(trained_net, X_test); % 反归一化预测结果 Y_pred = Y_pred .* max(train_data) + min(train_data); Y_test = Y_test .* max(train_data) + min(train_data); % 绘制预测结果 figure plot(Y_test(:,1), 'b') hold on plot(Y_pred(:,1), 'r') legend('真实值', '预测值') title('负荷预测结果') xlabel('时间步长') ylabel('负荷值')

根据您提供的代码,出错的原因是您的输入数据的特征维度为 51,但是您的模型的输入层需要的特征维度为 2。这是因为您在将数据转换为训练数据时,使用了所有特征。您需要仅选择前两个特征作为输入,即时间和负荷值。您可以在以下代码中对 `train_data_norm` 进行修改,以仅选择前两个特征作为输入: ``` % 准备训练数据 X_train = []; Y_train = []; n_steps = 3; % 每个时间步长包含的数据点数 for i = n_steps:size(train_data_norm, 1) X_train = [X_train; train_data_norm(i-n_steps+1:i, 1:2)]; % 只选择前两个特征作为输入 Y_train = [Y_train; train_data_norm(i, 1:2)]; end ``` 这样可以确保您的输入数据的特征维度为 2,与您的模型的输入层所需的特征维度相匹配。
阅读全文

相关推荐

from data_process import get_data import torch from sklearn.model_selection import train_test_split from LeNet5 import LeNet5 X, y = get_data() # 获取数据【0.025,0.035】100*0.2 = 20 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y) # 数据拆分 print(X_train.shape) #(1075, 227, 227, 1) 0 1 2 3 --- (1075, 1, 227, 227) 0 3 1 2 X_train_tensor = torch.tensor(X_train, dtype=torch.float32).permute(0, 3, 1, 2) # 将数据转成模型要求的形式 print(X_train_tensor.shape) X_test_tensor = torch.tensor(X_test, dtype=torch.float32).permute(0, 3, 1, 2) y_train_tensor = torch.tensor(y_train, dtype=torch.int64) train_ds = torch.utils.data.TensorDataset(X_train_tensor, y_train_tensor) # 将数据转为tensordata类型 train_dl = torch.utils.data.DataLoader(train_ds, batch_size=128, shuffle=True) # 对数据进行分批及打乱操作 network = LeNet5() # 实例化得到一个leNet-5网络模型 loss_fn = torch.nn.CrossEntropyLoss() # 损失函数(交差熵) optimizer = torch.optim.SGD(network.parameters(), lr=0.01) # 优化器 # 模型训练 for epoch in range(1): for image, label in train_dl: y_pre = network(image) # 模型计算(前向传播) loss = loss_fn(y_pre, label) # 计算损失值 network.zero_grad() # 将网络中的所有梯度清零 loss.backward() # 计算梯度项(反向求导) optimizer.step() # 参数优化(模型训练) print('第{}轮训练,当前批次的训练损失值为:{}'.format(epoch, loss.item())) predicted = network(X_test_tensor) # 模型预测 result = predicted.data.numpy().argmax(axis=1) # 预测标签 acc_test = (result == y_test).mean() # 模型测试精度 print(acc_test) torch.save(network.state_dict(), 'leNet5-1.pt') # 保存模型参数

import tensorflow as tf import numpy as np from keras import Model in_flow= np.load("X_in_30od.npy") out_flow= np.load("X_out_30od.npy") c1 = np.load("X_30od.npy") D1 = np.load("Y_30od.npy") print(c1.shape) print(D1.shape) max=np.max(out_flow) train_in_flow=in_flow[0:200]/max val_in_flow=in_flow[200:260]/max test_in_flow=out_flow[260:]/max train_out_flow=out_flow[0:200]/max val_out_flow=out_flow[200:260]/max test_out_flow=out_flow[260:]/max train_c1=c1[0:200]/max val_c1=c1[200:260]/max test_c1=c1[260:]/max train_D1=D1[0:200]/max val_D1=D1[200:260]/max test_D1=D1[260:]/max print(train_c1.shape, train_in_flow.shape, train_in_flow.shape, train_D1.shape) from keras.layers import * input_od=Input(shape=(5,109,109)) x1=Reshape((5,109,109,1),input_shape=(5,109,109))(input_od) x1=ConvLSTM2D(filters=64,kernel_size=(3,3),activation='relu',padding='same',input_shape=(5,109,109,1))(x1) x1=Dropout(0.2)(x1) x1=Dense(1)(x1) x1=Reshape((109,109))(x1) input_inflow=Input(shape=(5,109)) x2=Permute((2,1))(input_inflow) x2=LSTM(109,return_sequences=True,activation='sigmoid')(x2) x2=Dense(109,activation='sigmoid')(x2) x2=tf.multiply(x1,x2) x2=Dense(109,activation='sigmoid')(x2) input_inflow2=Input(shape=(5,109)) x3=Permute([2,1])(input_inflow2) x3=LSTM(109,return_sequences=True,activation='sigmoid')(x3) x3=Dense(109,activation='sigmoid')(x3) x3 = Reshape((109, 109))(x3) x3=tf.multiply(x1,x3) x3=Dense(109,activation='sigmoid')(x3) mix=Add()([x2,x3]) mix=Bidirectional(LSTM(109,return_sequences=True,activation='sigmoid'))(mix) mix=Dense(109,activation='sigmoid')(mix) model= Model(inputs=[input_od,input_inflow,input_inflow2],outputs=[mix]) model.compile(optimizer='adam', loss='mean_squared_error') history = model.fit([train_c1, train_in_flow,train_in_flow ],train_D1, validation_data=([val_c1,val_out_flow, val_in_flow], val_D1), epochs=100, batch_size=32) model.save("my_model.h10032") model.save_weights("my_model_weights.h10032") 根据上述程序利用保持好的模型预测并将预测结果可视化输出

def init(self, dim, num_heads, kernel_size=3, padding=1, stride=1, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().init() head_dim = dim // num_heads self.num_heads = num_heads self.kernel_size = kernel_size self.padding = padding self.stride = stride self.scale = qk_scale or head_dim**-0.5 self.v = nn.Linear(dim, dim, bias=qkv_bias) self.attn = nn.Linear(dim, kernel_size**4 * num_heads) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.unfold = nn.Unfold(kernel_size=kernel_size, padding=padding, stride=stride) self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True) def forward(self, x): B, H, W, C = x.shape v = self.v(x).permute(0, 3, 1, 2) h, w = math.ceil(H / self.stride), math.ceil(W / self.stride) v = self.unfold(v).reshape(B, self.num_heads, C // self.num_heads, self.kernel_size * self.kernel_size, h * w).permute(0, 1, 4, 3, 2) # B,H,N,kxk,C/H attn = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) attn = self.attn(attn).reshape( B, h * w, self.num_heads, self.kernel_size * self.kernel_size, self.kernel_size * self.kernel_size).permute(0, 2, 1, 3, 4) # B,H,N,kxk,kxk attn = attn * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).permute(0, 1, 4, 3, 2).reshape( B, C * self.kernel_size * self.kernel_size, h * w) x = F.fold(x, output_size=(H, W), kernel_size=self.kernel_size, padding=self.padding, stride=self.stride) x = self.proj(x.permute(0, 2, 3, 1)) x = self.proj_drop(x) return x

class STHSL(nn.Module): def __init__(self): super(STHSL, self).__init__() self.dimConv_in = nn.Conv3d(1, args.latdim, kernel_size=1, padding=0, bias=True) self.dimConv_local = nn.Conv2d(args.latdim, 1, kernel_size=1, padding=0, bias=True) self.dimConv_global = nn.Conv2d(args.latdim, 1, kernel_size=1, padding=0, bias=True) self.spa_cnn_local1 = spa_cnn_local(args.latdim, args.latdim) self.spa_cnn_local2 = spa_cnn_local(args.latdim, args.latdim) self.tem_cnn_local1 = tem_cnn_local(args.latdim, args.latdim) self.tem_cnn_local2 = tem_cnn_local(args.latdim, args.latdim) self.Hypergraph_Infomax = Hypergraph_Infomax() self.tem_cnn_global1 = tem_cnn_global(args.latdim, args.latdim, 9) self.tem_cnn_global2 = tem_cnn_global(args.latdim, args.latdim, 9) self.tem_cnn_global3 = tem_cnn_global(args.latdim, args.latdim, 9) self.tem_cnn_global4 = tem_cnn_global(args.latdim, args.latdim, 6) self.local_tra = Transform_3d() self.global_tra = Transform_3d() def forward(self, embeds_true, neg): embeds_in_global = self.dimConv_in(embeds_true.unsqueeze(1)) DGI_neg = self.dimConv_in(neg.unsqueeze(1)) embeds_in_local = embeds_in_global.permute(0, 3, 1, 2, 4).contiguous().view(-1, args.latdim, args.row, args.col, 4) spa_local1 = self.spa_cnn_local1(embeds_in_local) spa_local2 = self.spa_cnn_local2(spa_local1) spa_local2 = spa_local2.view(-1, args.temporalRange, args.latdim, args.areaNum, args.cateNum).permute(0, 2, 3, 1, 4) tem_local1 = self.tem_cnn_local1(spa_local2) tem_local2 = self.tem_cnn_local2(tem_local1) eb_local = tem_local2.mean(3) eb_tra_local = self.local_tra(tem_local2) out_local = self.dimConv_local(eb_local).squeeze(1) hy_embeds, Infomax_pred = self.Hypergraph_Infomax(embeds_in_global, DGI_neg) tem_global1 = self.tem_cnn_global1(hy_embeds) tem_global2 = self.tem_cnn_global2(tem_global1) tem_global3 = self.tem_cnn_global3(tem_global2) tem_global4 = self.tem_cnn_global4(tem_global3) eb_global = tem_global4.squeeze(3) eb_tra_global = self.global_tra(tem_global4) out_global = self.dimConv_global(eb_global).squeeze(1) return out_local, eb_tra_local, eb_tra_global, Infomax_pred, out_global

最新推荐

recommend-type

这是华为手机的汇智动漫AR游戏软件,仅适用于华为手机哦,内无任何广告

这是华为手机的汇智动漫AR游戏软件,仅适用于华为手机哦,内无任何广告
recommend-type

VB图书管理系统(完全可以运行)修改好的(2024ql).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

这是小米手机专用的奥特曼AR软件安装包,仅限小米手机使用哦

这是小米手机专用的奥特曼AR软件安装包,仅限小米手机使用哦
recommend-type

毕设-PHP-[主机域名]老枪二级域名系统朴素版_lqdomain10.zip

毕设-PHP-[主机域名]老枪二级域名系统朴素版_lqdomain10.zip
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依