import pandas as pd import torch import torch.nn as nn import numpy as np # 读取Excel文件 data_frame = pd.read_excel('zd2.xlsx') # 去掉第一列 第一列是时间 data = data_frame.iloc[:, 1:] data = data.values # 按500个时间段 划分 new_data = data.reshape(-1, 500, 2) # 修改数据尺寸 new_data = torch.from_numpy(new_data).permute(0,2,1).float() #20, 2, 500 20代表10000个数据划分了20组 2是两个特征 500指500个时间段 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv1d(2, 16, kernel_size=3, padding=1) self.conv2 = nn.Conv1d(16, 32, kernel_size=3, padding=1) self.conv3 = nn.Conv1d(32, 64, kernel_size=3, padding=1) self.pool = nn.MaxPool1d(kernel_size=2) # self.fc1 = nn.Linear(64 * 62, 128) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = self.pool(x) x = self.conv2(x) x = nn.functional.relu(x) x = self.pool(x) x = self.conv3(x) x = nn.functional.relu(x) x = self.pool(x) return x net = Net() after_data = net(new_data) mean = torch.mean(after_data, dim=0, keepdim=True) std = torch.std(after_data, dim=0, keepdim=True) result = (after_data - mean) / std after_data = nn.functional.normalize(after_data, p=1, dim=1)
时间: 2024-01-05 10:03:42 浏览: 94
这段代码是读取Excel文件(zd2.xlsx),然后对数据进行处理和转换。具体步骤如下:
1. 使用 pandas 库读取 Excel 文件,并去掉第一列(时间列)。
2. 将数据按照500个时间段进行划分,得到一个新的数据格式。
3. 修改数据尺寸,将数据转换为 PyTorch 的 Tensor 格式,并将维度调整为 (20, 2, 500),其中20代表10000个数据划分了20组,2是两个特征,500指500个时间段。
4. 定义了一个名为 Net 的神经网络类,该类包含了三个卷积层和一个最大池化层。
5. 在神经网络中进行前向传播,得到输出结果 after_data。
6. 对输出结果进行归一化处理,计算均值和标准差,并将数据减去均值再除以标准差得到归一化后的结果 result。
7. 使用 L1 归一化函数对 after_data 进行归一化处理。
请注意,这段代码中存在一个注释掉的全连接层 self.fc1 = nn.Linear(64 * 62, 128),如果需要使用全连接层,请取消注释并根据实际情况调整输入和输出的维度。
相关问题
import torch import torch.nn as nn import numpy as np from torch.utils.data import DataLoader, TensorDataset import pandas as pd
你好!这段代码看起来是在导入 PyTorch 和 NumPy 库,以及一些需要使用的模块。其中:
- `import torch` 导入 PyTorch 库
- `import torch.nn as nn` 导入 PyTorch 中的神经网络模块
- `import numpy as np` 导入 NumPy 库,并将其命名为 np
- `from torch.utils.data import DataLoader, TensorDataset` 导入 PyTorch 的数据加载器和数据集类型
- `import pandas as pd` 导入 Pandas 库,并将其命名为 pd
这里的代码仅仅是导入了需要使用的模块,没有具体的功能实现。如果您有任何其他问题,请随时提出。
修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)
修改后的代码如下所示:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import matplotlib.pyplot as plt
from sklearn.metrics import precision_score, recall_score, f1_score, cohen_kappa_score
data_ = pd.read_csv(r"C:\Users\zhangjinyue\Desktop\rice.csv", header=None)
data_ = np.array(data_).astype('float64')
train_data = data_[:, :520]
train_labels = data_[:, 520]
train_data, _, train_labels, _ = train_test_split(train_data, train_labels, test_size=0.33333)
train_data = torch.Tensor(train_data)
train_labels = torch.LongTensor(train_labels)
train_data = train_data.reshape(-1, 1, 20, 26)
start_epoch = 1
num_epoch = 1
BATCH_SIZE = 70
Ir = 0.001
classes = ('0', '1', '2', '3', '4', '5')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.benchmark = True
best_acc = 0.0
train_dataset = data.TensorDataset(train_data, train_labels)
test_dataset = data.TensorDataset(train_data, train_labels)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
```
请注意,我做了以下修改:
1. 移除了不需要的导入语句。
2. 修复了变量名拼写错误。
3. 移除了重复的代码行。
4. 修正了 `torch.utils.data.DataLoader` 的拼写错误。
5. 修正了数据集分割时的变量名错误。
请根据你的实际需求进一步调整代码。
阅读全文