import pandas as pd import torch import torch.nn as nn import numpy as np # 读取Excel文件 data_frame = pd.read_excel('zd2.xlsx') # 去掉第一列 第一列是时间 data = data_frame.iloc[:, 1:] data = data.values # 按500个时间段 划分 new_data = data.reshape(-1, 500, 2) # 修改数据尺寸 new_data = torch.from_numpy(new_data).permute(0,2,1).float() #20, 2, 500 20代表10000个数据划分了20组 2是两个特征 500指500个时间段 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv1d(2, 16, kernel_size=3, padding=1) self.conv2 = nn.Conv1d(16, 32, kernel_size=3, padding=1) self.conv3 = nn.Conv1d(32, 64, kernel_size=3, padding=1) self.pool = nn.MaxPool1d(kernel_size=2) # self.fc1 = nn.Linear(64 * 62, 128) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = self.pool(x) x = self.conv2(x) x = nn.functional.relu(x) x = self.pool(x) x = self.conv3(x) x = nn.functional.relu(x) x = self.pool(x) return x net = Net() after_data = net(new_data) mean = torch.mean(after_data, dim=0, keepdim=True) std = torch.std(after_data, dim=0, keepdim=True) result = (after_data - mean) / std after_data = nn.functional.normalize(after_data, p=1, dim=1)

时间: 2024-01-05 17:03:42 浏览: 30
这段代码是读取Excel文件(zd2.xlsx),然后对数据进行处理和转换。具体步骤如下: 1. 使用 pandas 库读取 Excel 文件,并去掉第一列(时间列)。 2. 将数据按照500个时间段进行划分,得到一个新的数据格式。 3. 修改数据尺寸,将数据转换为 PyTorch 的 Tensor 格式,并将维度调整为 (20, 2, 500),其中20代表10000个数据划分了20组,2是两个特征,500指500个时间段。 4. 定义了一个名为 Net 的神经网络类,该类包含了三个卷积层和一个最大池化层。 5. 在神经网络中进行前向传播,得到输出结果 after_data。 6. 对输出结果进行归一化处理,计算均值和标准差,并将数据减去均值再除以标准差得到归一化后的结果 result。 7. 使用 L1 归一化函数对 after_data 进行归一化处理。 请注意,这段代码中存在一个注释掉的全连接层 self.fc1 = nn.Linear(64 * 62, 128),如果需要使用全连接层,请取消注释并根据实际情况调整输入和输出的维度。
相关问题

import torch import torch.nn as nn import numpy as np from torch.utils.data import DataLoader, TensorDataset import pandas as pd

你好!这段代码看起来是在导入 PyTorch 和 NumPy 库,以及一些需要使用的模块。其中: - `import torch` 导入 PyTorch 库 - `import torch.nn as nn` 导入 PyTorch 中的神经网络模块 - `import numpy as np` 导入 NumPy 库,并将其命名为 np - `from torch.utils.data import DataLoader, TensorDataset` 导入 PyTorch 的数据加载器和数据集类型 - `import pandas as pd` 导入 Pandas 库,并将其命名为 pd 这里的代码仅仅是导入了需要使用的模块,没有具体的功能实现。如果您有任何其他问题,请随时提出。

import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from setuptools.sandbox import save_path from sklearn.preprocessing import StandardScaler, MinMaxScaler from torch.utils.data import TensorDataset from tqdm import tqdm

这段代码是在导入一些常用的 Python 库和模块,包括: - numpy:用于科学计算的 Python 库,提供了高性能的多维数组(ndarray)对象和相关的计算功能; - matplotlib:用于绘制图表和数据可视化的 Python 库; - pandas:用于数据处理和分析的 Python 库,提供了高性能、易用的数据结构和数据分析工具; - torch:PyTorch 深度学习框架的 Python 接口,提供了张量(tensor)计算和自动求导功能; - torch.nn:PyTorch 深度学习框架的神经网络模块,提供了常用的神经网络层和模型; - StandardScaler 和 MinMaxScaler:用于数据标准化和归一化的类; - TensorDataset:用于封装张量数据集的类; - tqdm:用于实现进度条的 Python 模块。 这些库和模块在深度学习领域经常被使用,可以方便地进行数据处理、模型构建和训练等任务。

相关推荐

修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)

import torch import torch.nn as nn import pandas as pd from sklearn.model_selection import train_test_split # 加载数据集 data = pd.read_csv('../dataset/train_10000.csv') # 数据预处理 X = data.drop('target', axis=1).values y = data['target'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) X_train = torch.from_numpy(X_train).float() X_test = torch.from_numpy(X_test).float() y_train = torch.from_numpy(y_train).float() y_test = torch.from_numpy(y_test).float() # 定义LSTM模型 class LSTMModel(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super(LSTMModel, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device) c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device) out, _ = self.lstm(x, (h0, c0)) out = self.fc(out[:, -1, :]) return out # 初始化模型和定义超参数 input_size = X_train.shape[1] hidden_size = 64 num_layers = 2 output_size = 1 model = LSTMModel(input_size, hidden_size, num_layers, output_size) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 100 for epoch in range(num_epochs): model.train() outputs = model(X_train) loss = criterion(outputs, y_train) optimizer.zero_grad() loss.backward() optimizer.step() if (epoch+1) % 10 == 0: print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}') # 在测试集上评估模型 model.eval() with torch.no_grad(): outputs = model(X_test) loss = criterion(outputs, y_test) print(f'Test Loss: {loss.item():.4f}') 我有额外的数据集CSV,请帮我数据集和测试集分离

将冒号后面的代码改写成一个nn.module类:import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense, LSTM data1 = pd.read_csv("终极1.csv", usecols=[17], encoding='gb18030') df = data1.fillna(method='ffill') data = df.values.reshape(-1, 1) scaler = MinMaxScaler(feature_range=(0, 1)) data = scaler.fit_transform(data) train_size = int(len(data) * 0.8) test_size = len(data) - train_size train, test = data[0:train_size, :], data[train_size:len(data), :] def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) look_back = 30 trainX, trainY = create_dataset(train, look_back) testX, testY = create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) model = Sequential() model.add(LSTM(50, input_shape=(1, look_back), return_sequences=True)) model.add(LSTM(50)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(trainX, trainY, epochs=6, batch_size=1, verbose=2) trainPredict = model.predict(trainX) testPredict = model.predict(testX) trainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY])

最新推荐

recommend-type

HP-Socket编译-Linux

HP-Socket编译-Linux
recommend-type

JavaScript_生活在Discord上的开源社区列表.zip

JavaScript
recommend-type

JavaScript_MultiOn API.zip

JavaScript
recommend-type

JavaScript_简单和完整的React DOM测试工具,鼓励良好的测试实践.zip

JavaScript
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依