PSO-SVM代码实现

时间: 2023-09-30 15:07:52 浏览: 32
以下是基于PSO算法的SVM代码实现(Python版本): ```python import numpy as np class PSO_SVM: def __init__(self, c1=1, c2=1, w=0.6, max_iter=100, num_particles=10, kernel='linear'): self.c1 = c1 self.c2 = c2 self.w = w self.max_iter = max_iter self.num_particles = num_particles self.kernel = kernel self.X = None self.y = None self.n_samples = None self.n_features = None self.alpha = None self.b = None self.particles_alpha = None self.particles_b = None self.particles_v_alpha = None self.particles_v_b = None self.particles_loss = None self.gbest_alpha = None self.gbest_b = None self.gbest_loss = float('inf') def fit(self, X, y): self.X = X self.y = y self.n_samples, self.n_features = X.shape self.alpha = np.zeros(self.n_samples) self.b = 0 self.particles_alpha = np.zeros((self.num_particles, self.n_samples)) self.particles_b = np.zeros(self.num_particles) self.particles_v_alpha = np.zeros((self.num_particles, self.n_samples)) self.particles_v_b = np.zeros(self.num_particles) self.particles_loss = np.zeros(self.num_particles) for i in range(self.num_particles): self.particles_alpha[i] = np.random.uniform(low=0, high=1, size=self.n_samples) self.particles_b[i] = np.random.uniform(low=0, high=1) self.particles_v_alpha[i] = np.zeros(self.n_samples) self.particles_v_b[i] = 0 self.particles_loss[i] = self.loss(self.particles_alpha[i], self.particles_b[i]) if self.particles_loss[i] < self.gbest_loss: self.gbest_alpha = self.particles_alpha[i] self.gbest_b = self.particles_b[i] self.gbest_loss = self.particles_loss[i] for _ in range(self.max_iter): for i in range(self.num_particles): r1 = np.random.uniform(low=0, high=1, size=self.n_samples) r2 = np.random.uniform(low=0, high=1) self.particles_v_alpha[i] = self.w * self.particles_v_alpha[i] \ + self.c1 * r1 * (self.particles_alpha[i] - self.gbest_alpha) \ + self.c2 * r2 * (self.particles_alpha[i] - self.alpha) self.particles_v_b[i] = self.w * self.particles_v_b[i] \ + self.c1 * r1 * (self.particles_b[i] - self.gbest_b) \ + self.c2 * r2 * (self.particles_b[i] - self.b) self.particles_alpha[i] = np.clip(self.particles_alpha[i] + self.particles_v_alpha[i], 0, 1) self.particles_b[i] += self.particles_v_b[i] self.particles_loss[i] = self.loss(self.particles_alpha[i], self.particles_b[i]) if self.particles_loss[i] < self.gbest_loss: self.gbest_alpha = self.particles_alpha[i] self.gbest_b = self.particles_b[i] self.gbest_loss = self.particles_loss[i] self.alpha = self.gbest_alpha self.b = self.gbest_b def predict(self, X_test): y_pred = np.zeros(len(X_test)) if self.kernel == 'linear': for i in range(len(X_test)): y_pred[i] = np.sign(np.dot(self.alpha * self.y, np.dot(self.X, X_test[i])) + self.b) return y_pred def loss(self, alpha, b): if self.kernel == 'linear': y_pred = np.dot(self.alpha * self.y, np.dot(self.X, self.X.T)) + b loss = np.sum(alpha) - 0.5 * np.sum((alpha * self.y)[:, None] * (self.y * y_pred)) return loss ``` 其中,PSO算法的核心部分在`fit`方法中,其中`r1`和`r2`分别代表随机因子,`particles_v_alpha`和`particles_v_b`分别代表粒子的速度,`particles_alpha`和`particles_b`分别代表粒子的位置,`self.gbest_alpha`和`self.gbest_b`分别代表全局最优位置,`self.particles_loss`代表粒子的损失函数值。其中,损失函数的实现采用的是线性核函数。

相关推荐

### 回答1: pso-svm是基于粒子群优化(PSO)算法和支持向量机(SVM)的结合实现。以下是一个用MATLAB实现pso-svm的代码示例。 matlab % 导入数据集 load iris_dataset X = irisInputs; Y = irisTargets; % 设置SVM参数 C = 1; kernel = 'linear'; % 定义适应度函数 fitness = @(x) svm_fitness(x, X, Y, C, kernel); % 设置PSO参数 particle_size = 30; max_iteration = 50; dimension = size(X, 2); lower_bound = zeros(1, dimension); upper_bound = ones(1, dimension); % 初始化粒子群 particles_position = rand(particle_size, dimension); particles_velocity = zeros(particle_size, dimension); particles_best_position = particles_position; particles_best_fitness = inf(1, particle_size); global_best_position = []; global_best_fitness = inf; % 迭代优化 for iteration = 1:max_iteration for particle = 1:particle_size % 更新粒子速度和位置 particles_velocity(particle, :) = update_velocity(particles_velocity(particle, :), particles_position(particle, :), ... particles_best_position(particle, :), global_best_position); particles_position(particle, :) = update_position(particles_velocity(particle, :), particles_position(particle, :), ... lower_bound, upper_bound); % 计算适应度 current_fitness = fitness(particles_position(particle, :)); % 更新个体和全局最优解 if current_fitness < particles_best_fitness(particle) particles_best_fitness(particle) = current_fitness; particles_best_position(particle, :) = particles_position(particle, :); if current_fitness < global_best_fitness global_best_fitness = current_fitness; global_best_position = particles_position(particle, :); end end end disp(['当前迭代次数:' num2str(iteration) ',最佳适应度:' num2str(global_best_fitness)]); end % SVM模型训练与预测 svm_model = fitcsvm(X, Y, 'BoxConstraint', C, 'KernelFunction', kernel, 'KernelScale', 'auto'); svm_predicted_labels = predict(svm_model, X); accuracy = sum(svm_predicted_labels == Y) / length(Y); disp(['SVM精度:' num2str(accuracy)]); % SVM fitness函数 function fitness_value = svm_fitness(x, X, Y, C, kernel) svm_model = fitcsvm(X, Y, 'BoxConstraint', C, 'KernelFunction', kernel, 'KernelScale', 'auto'); svm_predicted_labels = predict(svm_model, X); accuracy = sum(svm_predicted_labels == Y) / length(Y); fitness_value = 1 - accuracy; end % 更新粒子速度函数 function updated_velocity = update_velocity(velocity, position, best_position, global_best_position) inertia_weight = 0.9; cognitive_coefficient = 2; social_coefficient = 2; phi = cognitive_coefficient + social_coefficient; cognitive_component = rand(size(velocity)) .* (best_position - position); social_component = rand(size(velocity)) .* (global_best_position - position); updated_velocity = inertia_weight * velocity + cognitive_coefficient * cognitive_component + social_coefficient * social_component; end % 更新粒子位置函数 function updated_position = update_position(velocity, position, lower_bound, upper_bound) updated_position = position + velocity; updated_position = min(updated_position, upper_bound); updated_position = max(updated_position, lower_bound); end 这段代码实现了一个基于PSO的SVM模型,在迭代过程中不断更新粒子的速度和位置,并计算对应的适应度值。最后,通过调用MATLAB中的fitcsvm函数,训练出最终的SVM模型并进行预测,给出精度评估结果。 ### 回答2: PSO-SVM 是一种结合了粒子群优化算法(Particle Swarm Optimization, PSO)和支持向量机(Support Vector Machine, SVM)的算法。下面是使用 MATLAB 实现 PSO-SVM 的示例代码: matlab % 导入数据集 dataset = load('data.mat'); X = dataset.X; % 特征向量 Y = dataset.Y; % 目标值 % 设置参数 C = 1; % SVM参数,用于调整误分类和间隔的权重 gamma = 1; % SVM参数,用于控制径向基函数的宽度 w = 1; % PSO参数,用于调整全局最优值和局部最优值的比重 c1 = 2; % PSO参数,用于调整粒子个体最优值的权重 c2 = 2; % PSO参数,用于调整粒子群体最优值的权重 max_iter = 100; % 最大迭代次数 % 根据数据集大小初始化粒子群 particle_size = size(X, 1); particle_pos = unifrnd(-1, 1, particle_size, size(X, 2)); particle_vel = zeros(particle_size, size(X, 2)); particle_best_pos = particle_pos; particle_best_fit = inf(particle_size, 1); global_best_pos = particle_pos(1, :); global_best_fit = inf; % 开始迭代 for iter = 1:max_iter for i = 1:particle_size % 计算每个粒子的适应度值 svm_model = fitcsvm(X, Y, 'BoxConstraint', C, 'KernelFunction', 'rbf', 'KernelScale', gamma, 'Standardize', true); svm_loss = loss(svm_model, X, Y); % 更新粒子的最优位置和最优适应度 if svm_loss < particle_best_fit(i) particle_best_pos(i, :) = particle_pos(i, :); particle_best_fit(i) = svm_loss; % 更新全局最优位置和最优适应度 if svm_loss < global_best_fit global_best_pos = particle_best_pos(i, :); global_best_fit = svm_loss; end end % 更新粒子的速度和位置 particle_vel(i, :) = w * particle_vel(i, :) + c1 * rand(1) * (particle_best_pos(i, :) - particle_pos(i, :)) + c2 * rand(1) * (global_best_pos - particle_pos(i, :)); particle_pos(i, :) = particle_pos(i, :) + particle_vel(i, :); end end % 输出最终结果 disp('最优特征权重:'); disp(global_best_pos); disp('最优适应度值:'); disp(global_best_fit); 请注意,这只是一个示例代码,具体的实现可能会根据需求有所调整。你可以根据自己的数据集和需求修改参数和算法细节。 ### 回答3: PSO-SVM是一种将PSO(粒子群优化)算法与支持向量机(SVM)相结合的方法,用于解决分类问题。以下是一个使用Matlab实现PSO-SVM的代码示例: matlab % 加载数据集 load iris_dataset.mat X = irisInputs; y = irisTargets; % 初始化PSO参数 n_particles = 30; % 粒子数量 max_iter = 100; % 迭代次数 w = 0.8; % 惯性权重 c1 = 1; % 学习因子1 c2 = 1; % 学习因子2 % 初始化粒子位置和速度 position = randn(n_particles, size(X, 2) + 1); velocity = zeros(n_particles, size(X, 2) + 1); % 逐次迭代 for iter = 1:max_iter % 计算适应度值 fitness = zeros(1, n_particles); for i = 1:n_particles SVM_model = fitcsvm(X, y, 'BoxConstraint', 10^position(i, end), 'KernelFunction', 'rbf', 'RBF_sigma', position(i, end-1)); fitness(i) = 1 - SVM_model.CVLoss; end % 更新全局最优解和局部最优解 [~, global_best_idx] = max(fitness); global_best_position = position(global_best_idx, :); [~, local_best_idx] = max(fitness); local_best_position = position(local_best_idx, :); % 更新粒子速度和位置 for i = 1:n_particles velocity(i, :) = w * velocity(i, :) + c1 * rand() * (local_best_position - position(i, :)) + c2 * rand() * (global_best_position - position(i, :)); position(i, :) = position(i, :) + velocity(i, :); end end % 在整个数据集上训练最佳模型 SVM_model = fitcsvm(X, y, 'BoxConstraint', 10^global_best_position(end), 'KernelFunction', 'rbf', 'RBF_sigma', global_best_position(end-1)); % 测试模型 y_predict = predict(SVM_model, X); % 输出结果 accuracy = sum(y_predict == y) / numel(y); disp(['Accuracy: ', num2str(accuracy)]); 这个代码实现了在iris数据集上使用PSO-SVM进行分类的步骤。首先加载数据集,然后设置PSO的参数。接下来,初始化粒子的位置和速度。在每次迭代中,计算每个粒子的适应度值并更新全局最优解和局部最优解。最后,在整个数据集上训练最佳模型并进行预测,输出分类准确度。 请注意,以上代码仅为示例,实际应用中可能需要根据具体问题进行调整和改进。
### 回答1: PSO-SVM算法是将粒子群优化算法(PSO)和支持向量机(SVM)算法相结合的一种分类算法。该算法通过使用PSO优化SVM模型的参数,可以得到更优的分类器。 以下是PSO-SVM算法的Matlab代码: % 首先,准备训练数据和测试数据。 trainData = csvread('train.csv'); testData = csvread('test.csv'); % 将训练数据和测试数据分别分解为数据和标签 trainDataX = trainData(:, 1:end-1); trainDataY = trainData(:, end); testDataX = testData(:, 1:end-1); testDataY = testData(:, end); % 设置PSO-SVM算法的参数 C = 1; % 惩罚系数 gamma = 0.1; % 核函数参数 maxIter = 50; % 迭代次数 particleNum = 20; % 粒子数目 % 初始化粒子群 particlePositions = zeros(particleNum, 2); particleVelocities = zeros(particleNum, 2); particleBestPositions = zeros(particleNum, 2); particleBestValues = Inf(particleNum, 1); globalBestPosition = zeros(1, 2); globalBestValue = Inf; % 开始PSO循环优化SVM模型参数 for iter = 1:maxIter % 更新粒子的速度和位置 for i = 1:particleNum R1 = rand; R2 = rand; particleVelocities(i, 1) = 0.5 * particleVelocities(i, 1) + 0.5 * R1 * (particleBestPositions(i, 1) - particlePositions(i, 1)) + 0.5 * R2 * (globalBestPosition(1) - particlePositions(i, 1)); R1 = rand; R2 = rand; particleVelocities(i, 2) = 0.5 * particleVelocities(i, 2) + 0.5 * R1 * (particleBestPositions(i, 2) - particlePositions(i, 2)) + 0.5 * R2 * (globalBestPosition(2) - particlePositions(i, 2)); particlePositions(i, 1) = particlePositions(i, 1) + particleVelocities(i, 1); particlePositions(i, 2) = particlePositions(i, 2) + particleVelocities(i, 2); end % 训练SVM模型 for i = 1:particleNum svmModel = fitcsvm(trainDataX, trainDataY, 'KernelFunction', 'rbf', 'BoxConstraint', C, 'KernelScale', gamma); trainLoss = loss(svmModel, trainDataX, trainDataY); if trainLoss < particleBestValues(i) particleBestPositions(i, :) = particlePositions(i, :); particleBestValues(i) = trainLoss; if trainLoss < globalBestValue globalBestPosition = particlePositions(i, :); globalBestValue = trainLoss; end end end % 用测试数据评估SVM模型 svmModel = fitcsvm(trainDataX, trainDataY, 'KernelFunction', 'rbf', 'BoxConstraint', C, 'KernelScale', gamma); testLoss = loss(svmModel, testDataX, testDataY); fprintf('Iteration %d: Test loss = %f \n', iter, testLoss); end disp('PSO-SVM算法已完成'); 以上就是PSO-SVM算法的Matlab代码。该代码使用rbf核函数并设定了C和gamma参数,通过控制训练和测试数据的输入来进行模型的训练和评估。代码中的粒子群算法可以搜索模型的参数空间并找到最有分类器,从而提高模型的性能。 ### 回答2: PSO-SVM算法是一种结合粒子群优化算法和支持向量机的方法,它可以优化支持向量机的参数,提高模型的准确性和泛化能力。下面是PSO-SVM算法的MATLAB代码实现: 首先,需要定义目标函数,即粒子群优化算法的适应度函数,如下: matlab function accuracy = pso_svm_fit(params, X, y, kfold) C = params(1); % 惩罚因子 gamma = params(2); % 核函数中的参数 % 计算SVM相关参数 svm_option = ['-s 0 -t 2 -c ' num2str(C) ' -g ' num2str(gamma) ' -q']; % 采用5折交叉验证 cv = cvpartition(y, 'kfold', kfold); accu = []; for i = 1:kfold % 分离训练集和测试集 train_index = cv.training(i); test_index = cv.test(i); X_train = X(train_index, :); y_train = y(train_index); X_test = X(test_index, :); y_test = y(test_index); % 训练模型 model = svmtrain(y_train, X_train, svm_option); % 预测测试集 [predict_label, accuracy, decision_values] = svmpredict(y_test, X_test, model); % 记录准确率 accu = [accu; accuracy(1)]; end % 计算5折交叉验证的平均准确率 accuracy = mean(accu); end 然后,定义粒子群优化算法的主函数,如下: matlab function [best_params, best_fitness] = pso_svm(X, y, kfold, swarm_size, max_gen) % 粒子群优化算法的参数设置 w = 0.6; % 惯性权重 c1 = 1.5; % 个体学习因子 c2 = 2.0; % 社会学习因子 max_v = 1.0; % 最大速度 % 随机初始化粒子位置和速度 dim = 2; % SVM参数个数 pos = rand(swarm_size, dim) .* repmat([1, 10], swarm_size, 1); v = rand(swarm_size, dim) .* repmat([1, 1], swarm_size, 1); % 初始化最优位置和适应度 pbest_pos = pos; pbest_fitness = zeros(swarm_size, 1); for i = 1:swarm_size pbest_fitness(i) = pso_svm_fit(pos(i, :), X, y, kfold); end % 记录全局最优位置和适应度 [gbest_fitness, gbest_index] = max(pbest_fitness); gbest_pos = pbest_pos(gbest_index, :); % 迭代粒子群优化算法 for gen = 1:max_gen % 更新粒子速度和位置 v = w .* v + c1 .* rand(swarm_size, dim) .* (pbest_pos - pos) ... + c2 .* rand(swarm_size, dim) .* repmat(gbest_pos, swarm_size, 1) ... - c2 .* rand(swarm_size, dim) .* pos; % 限制速度范围 v(v > max_v) = max_v; v(v < -max_v) = -max_v; pos = pos + v; % 限制位置范围 pos(pos > 10) = 10; pos(pos < 1) = 1; % 更新个体最优位置和适应度 for i = 1:swarm_size fitness = pso_svm_fit(pos(i, :), X, y, kfold); if fitness > pbest_fitness(i) pbest_fitness(i) = fitness; pbest_pos(i, :) = pos(i, :); end end % 更新全局最优位置和适应度 [best_fitness, best_index] = max(pbest_fitness); if best_fitness > gbest_fitness gbest_fitness = best_fitness; gbest_pos = pbest_pos(best_index, :); end % 显示每一代的最优结果 fprintf('Generation %d: %.4f\n', gen, best_fitness); end % 返回PSO-SVM算法的最优结果 best_params = gbest_pos; best_fitness = gbest_fitness; end 最后,使用上述的函数来优化SVM的参数,并训练模型,如下: matlab % 加载数据集 load fisheriris X = meas(:, 1:2); y = grp2idx(species); % PSO-SVM算法的参数设置 kfold = 5; % 5折交叉验证 swarm_size = 20; % 粒子数 max_gen = 50; % 最大迭代次数 % 运行PSO-SVM算法 [best_params, best_fitness] = pso_svm(X, y, kfold, swarm_size, max_gen); % 在全样本上训练模型 C = best_params(1); gamma = best_params(2); svm_option = ['-s 0 -t 2 -c ' num2str(C) ' -g ' num2str(gamma) ' -q']; model = svmtrain(y, X, svm_option); % 可视化结果 figure; h(1:3) = gscatter(X(:,1), X(:,2), y,'rgb','osd'); hold on ezpolar(@(x)1); contour(X1,X2,reshape(scores,size(X1)),[0 0],'k'); title(sprintf('PSO-SVM,Accuracy=%.2f%%',best_fitness * 100)) legend(h,{'setosa','versicolor','virginica','support vectors'},'Location','NorthOutside'); axis equal hold off 以上就是使用MATLAB实现PSO-SVM算法的基本步骤,其中需要注意的是,粒子群优化算法中的参数设置会直接影响算法的收敛性和准确性,需要反复调试才能得到最佳结果。同时,在SVM模型中,核函数的选择也会影响模型的性能,需要综合考虑多种核函数并进行比较。 ### 回答3: PSO-SVM是一种组合了粒子群优化算法(PSO)和支持向量机(SVM)的分类算法。在该算法中,粒子群优化被用于SVM的参数优化,以达到更好的分类效果。 以下是一份PSO-SVM算法的MATLAB代码: matlab % PSO-SVM分类算法 % 导入数据 load('data.mat'); X = data(:,1:2); Y = data(:,3); % 划分训练集和测试集 indices = crossvalind('Kfold', Y, 10); for i = 1:10 test = (indices == i); train = ~test; xtrain = X(train,:); ytrain = Y(train,:); xtest = X(test,:); ytest = Y(test,:); % 初始化PSO参数和SVM参数 SwarmSize = 30; MaxIter = 100; c1 = 1.5; c2 = 1.5; w = 1; w_Min = 0.4; w_Max = 0.9; Vmax = 6; Ck = 10.^(-5:2); % 生成随机种群 for i=1:SwarmSize Position(i,:) = [rand(),rand()]; % C和gamma的随机初始化 Velocity(i,:) = [rand(),rand()] .* Vmax; % 粒子速度的随机初始化 end % 计算粒子适应度 for i=1:SwarmSize C = 10^(Position(i,1)*4-5); % 计算C gamma = 10^(Position(i,2)*4-8); % 计算gamma SVMStruct = svmtrain(xtrain,ytrain,'Kernel_Function','rbf','boxconstraint',C,'rbf_sigma',gamma); % 训练SVM模型 pred_label = svmclassify(SVMStruct,xtest); % 预测标签 fitness = 1 - sum(pred_label ~= ytest) / length(ytest); % 计算适应度 Fitness(i) = fitness; % 存储适应度 end % 根据适应度更新粒子位置和速度 [BestFit, BestIndex] = max(Fitness); % 找到最优适应度和索引 Pbest = Position; % 最优位置 Gbest = Position(BestIndex,:); % 全局最优位置 Pbestfit = Fitness; % 最优适应度 Gbestfit = BestFit; % 全局最优适应度 Velocity_new = Velocity; % 新速度 for k = 1:MaxIter w = w_Max - k * (w_Max - w_Min) / MaxIter; % 惯性权值更新公式 for i = 1:SwarmSize r1 = rand(); % 随机数1 r2 = rand(); % 随机数2 Velocity_new(i,:) = w .* Velocity(i,:) + ... c1 * r1 .* (Pbest(i,:) - Position(i,:)) + ... c2 * r2 .* (Gbest - Position(i,:)); % 速度更新公式 Velocity_new(i,:) = min(max(Velocity_new(i,:),-Vmax),Vmax); % 速度限制 Position_new = Position(i,:) + Velocity_new(i,:); % 位置更新 Position_new = min(max(Position_new,0),1); % 位置限制 C = 10^(Position_new(1)*4-5); % 计算新的C gamma = 10^(Position_new(2)*4-8); % 计算新的gamma SVMStruct = svmtrain(xtrain,ytrain,'Kernel_Function','rbf','boxconstraint',C,'rbf_sigma',gamma); % 训练新的SVM模型 pred_label = svmclassify(SVMStruct,xtest); % 预测标签 fitness = 1 - sum(pred_label ~= ytest) / length(ytest); % 计算新的适应度 if fitness > Fitness(i) % 更新当前最优解 Pbest(i,:) = Position_new; Pbestfit(i) = fitness; end if fitness > Gbestfit % 更新全局最优解 Gbest = Position_new; Gbestfit = fitness; end Position(i,:) = Position_new; Fitness(i) = fitness; end end % 显示结果 C = 10^(Gbest(1)*4-5); % 计算C gamma = 10^(Gbest(2)*4-8); % 计算gamma SVMStruct = svmtrain(X,Y,'Kernel_Function','rbf','boxconstraint',C,'rbf_sigma',gamma); % 训练最终的SVM模型 figure; SVMGrid(X,Y,SVMStruct); title(strcat('Classification using RBF-SVM (C = ', num2str(C), ', gamma = ', num2str(gamma), ')')); 在上述代码中,我们首先导入数据,然后使用K折交叉验证将数据集划分为训练集和测试集。接下来,我们定义PSO参数和SVM参数,并生成一个随机的粒子群。然后,我们计算每个粒子的适应度,并使用PSO算法更新粒子位置和速度,以寻找最优解。在完成迭代后,我们使用最优解训练SVM模型,并使用SVM绘制分类边界。
以下是使用PSO-SVM进行多分类的Python代码示例: python import numpy as np from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 生成多分类数据集 X, y = make_classification(n_samples=100, n_features=2, n_informative=2, n_redundant=0, n_classes=3, random_state=42) # 定义PSO-SVM分类器 class PSOSVM: def __init__(self, n_particles=10, max_iter=100, c1=2, c2=2, w=0.7): self.n_particles = n_particles self.max_iter = max_iter self.c1 = c1 self.c2 = c2 self.w = w def fit(self, X, y): # 数据标准化 scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # 初始化粒子群 particles = np.random.uniform(low=-1, high=1, size=(self.n_particles, X.shape\[1\] + 1)) velocities = np.zeros_like(particles) best_positions = particles.copy() best_scores = np.zeros(self.n_particles) # 迭代更新粒子群 for _ in range(self.max_iter): for i in range(self.n_particles): # 计算粒子的适应度得分 svm = SVC(C=10 ** particles\[i\]\[-1\]) svm.fit(X_scaled, y) y_pred = svm.predict(X_scaled) score = accuracy_score(y, y_pred) # 更新粒子的最佳位置和最佳得分 if score > best_scores\[i\]: best_positions\[i\] = particles\[i\].copy() best_scores\[i\] = score # 更新粒子的速度和位置 for i in range(self.n_particles): r1 = np.random.rand(X.shape\[1\] + 1) r2 = np.random.rand(X.shape\[1\] + 1) velocities\[i\] = self.w * velocities\[i\] + self.c1 * r1 * (best_positions\[i\] - particles\[i\]) + self.c2 * r2 * (best_positions.mean(axis=0) - particles\[i\]) particles\[i\] += velocities\[i\] # 找到最佳粒子的位置 best_particle = particles\[np.argmax(best_scores)\] # 根据最佳粒子的位置训练最终的SVM分类器 svm = SVC(C=10 ** best_particle\[-1\]) svm.fit(X_scaled, y) self.svm = svm self.scaler = scaler def predict(self, X): X_scaled = self.scaler.transform(X) return self.svm.predict(X_scaled) # 使用PSO-SVM进行多分类 pso_svm = PSOSVM(n_particles=10, max_iter=100, c1=2, c2=2, w=0.7) pso_svm.fit(X, y) y_pred = pso_svm.predict(X) # 计算准确率 accuracy = accuracy_score(y, y_pred) print("Accuracy:", accuracy) 请注意,这只是一个示例代码,具体的PSO-SVM实现可能会有所不同。你可以根据自己的需求进行调整和修改。 #### 引用[.reference_title] - *1* *2* *3* [基于Python的SVM算法深入研究](https://blog.csdn.net/weixin_45137708/article/details/106340493)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
PSO(粒子群优化)算法是一种常用于寻找全局最优解的优化算法。SVM(支持向量机)是一种常用的机器学习算法,用于分类和回归任务。在Python中,我们可以使用优化库比如PySwarm来实现PSO算法,并使用Scikit-learn库中的SVM模型来得到优化后的结果。 首先,导入所需的库: python import numpy as np from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import pyswarms as ps 接下来,定义一个函数来计算SVM模型的准确度: python def svm_accuracy(params, X_train, y_train, X_test, y_test): c = params[0] gamma = params[1] model = SVC(C=c, gamma=gamma) model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) return -accuracy 然后,定义一个函数作为PSO的目标函数,用于最小化SVM模型的准确度: python def pso_optimize_svm(X_train, y_train, X_test, y_test): bounds = (np.array([1, 0.001]), np.array([100, 100])) options = {'c1': 0.5, 'c2': 0.3, 'w': 0.9} optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=2, options=options, bounds=bounds) best_params, _ = optimizer.optimize(svm_accuracy, iters=100, verbose=False, X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test) return best_params 最后,使用数据集进行测试: python # 假设有一个数据集 X 和标签 y X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) best_params = pso_optimize_svm(X_train, y_train, X_test, y_test) print("最优参数:C={}, gamma={}".format(best_params[0], best_params[1])) 以上就是使用PSO优化SVM算法的Python代码的实现。通过PSO优化,我们可以找到在给定数据集上SVM模型的最优参数,从而提高分类的准确度。
SVM(支持向量机)是一种常用的模式识别和机器学习方法,使用维度高的数据集以及经过训练的样本进行分类。然而,在处理大规模或高维度的数据时,优化SVM模型的计算复杂度可能会变得非常高。 为了解决这个问题,我们可以使用粒子群算法(PSO)来优化SVM模型的参数。PSO是一种基于群体智能的优化算法,通过模拟鸟群在搜索食物(最优解)时的行为来优化函数。在PSO中,有许多粒子(候选解)在搜索空间中迭代移动,并以粒子的最佳位置和整个群体的最佳位置为导向。 在Matlab中,我们可以使用PSO优化SVM模型的参数。首先,我们需要定义SVM模型的目标函数,例如分类精度。然后,我们初始化一群粒子并在每个迭代中更新它们的位置和速度。每个粒子的位置表示SVM参数的取值,如惩罚参数C和核函数参数。 通过计算目标函数,我们可以评估当前粒子的适应度,并选择最佳位置来更新个体和全局最佳。通过不断迭代更新粒子的位置和速度,最终可以找到使SVM模型达到最佳性能的参数。 以下是一个简单的Matlab源代码示例,演示了如何使用粒子群算法优化SVM模型的参数(C和核函数参数)。 matlab % SVM模型目标函数 function acc = SVMObjective(params) % 设置SVM模型参数C和核函数参数 C = params(1); kernelParam = params(2); % 创建并训练SVM模型 % 计算分类精度 % 返回分类精度作为优化目标 end % 定义粒子群算法参数 options = optimoptions('particleswarm', 'MaxIterations', 100, 'Display', 'iter'); % 定义优化的变量范围 lb = [0.1, 0.1]; % 参数下界 ub = [10, 10]; % 参数上界 % 运行粒子群算法优化SVM模型的参数 [params, acc] = particleswarm(@SVMObjective, 2, lb, ub, options); % 输出最优参数和分类精度 disp('最优参数:'); disp(params); disp('分类精度:'); disp(acc); 这个示例演示了如何使用粒子群算法(Particle Swarm Optimization, PSO)优化SVM模型的参数,以使其达到最佳分类精度。在实际应用中,您可以根据自己的数据集和问题定义适当的目标函数,并调整优化参数,以获得更好的结果。
好的,下面我将为你提供一份Matlab代码,用于实现基于PSO-SVM的风电场风速预测。代码中使用的数据集为'风速与风电功率.xls',第一列为原始风速。 代码实现思路: 1. 读取数据集,并将第一列的数据作为原始风速。 2. 对原始风速数据进行预处理,包括去除缺失值和归一化。这里使用了Matlab内置的fillmissing和mapminmax函数。 3. 实现粒子群优化算法(PSO),用于优化SVM的参数。在每次迭代中,根据当前的粒子位置和速度,更新粒子在搜索空间中的位置和速度,并计算适应度函数的值。 4. 实现支持向量机算法(SVM),并根据PSO算法得到的最优参数进行训练。在训练过程中,使用10折交叉验证来评估模型的性能。 5. 对测试数据进行预测,并将预测结果与真实值进行比较。同时,使用Matlab绘图工具来可视化预测结果。 代码如下: matlab % 读取数据集 data = xlsread('风速与风电功率.xls'); X = data(:,1); % 第一列为原始风速 Y = data(:,2); % 第二列为风电功率 % 数据预处理 X = fillmissing(X,'linear'); % 去除缺失值 [X,PS] = mapminmax(X',0,1); % 归一化 % 定义SVM参数的搜索空间 min_C = -5; max_C = 15; min_g = -15; max_g = 3; range = [min_C,max_C,min_g,max_g]; % 定义PSO参数 n = 30; % 粒子数 max_iter = 20; % 最大迭代次数 w = 0.7; % 惯性权重 c1 = 1.5; % 学习因子1 c2 = 1.5; % 学习因子2 % PSO算法优化SVM参数 best_fitness = Inf; for i = 1:n % 初始化粒子位置和速度 p(i,:) = range(1) + (range(2)-range(1))*rand(1,2); % C,g v(i,:) = (range(2)-range(1))*rand(1,2); % 计算适应度函数的值 fitness = svm_pso_fitness(p(i,:),X,Y,10,PS); % 更新个体最优位置和全局最优位置 pbest(i,:) = p(i,:); if fitness < best_fitness gbest = p(i,:); best_fitness = fitness; end end % 迭代优化 for t = 1:max_iter for i = 1:n % 更新速度和位置 v(i,:) = w*v(i,:) + c1*rand(1,2).*(pbest(i,:)-p(i,:)) + c2*rand(1,2).*(gbest-p(i,:)); p(i,:) = p(i,:) + v(i,:); % 边界处理 p(i,p(i,:)<range(1)) = range(1); p(i,p(i,:)>range(2)) = range(2); p(i,p(i,:)<range(3)) = range(3); p(i,p(i,:)>range(4)) = range(4); % 计算适应度函数的值 fitness = svm_pso_fitness(p(i,:),X,Y,10,PS); % 更新个体最优位置和全局最优位置 if fitness < svm_pso_fitness(pbest(i,:),X,Y,10,PS) pbest(i,:) = p(i,:); end if fitness < best_fitness gbest = p(i,:); best_fitness = fitness; end end end % SVM算法训练和预测 C = 2^gbest(1); g = 2^gbest(2); model = fitcsvm(X,Y,'KernelFunction','rbf','BoxConstraint',C,'KernelScale',g); [predict_Y,scores] = predict(model,X); % 可视化预测结果 figure; plot(PS.xmax*X,PS.ymin*Y,'b.'); hold on; plot(PS.xmax*X,PS.ymin*predict_Y,'r-'); xlabel('Wind Speed (m/s)'); ylabel('Power (kW)'); legend('True','Predicted'); 其中,适应度函数的实现如下: matlab function fitness = svm_pso_fitness(p,X,Y,k,PS) % SVM_PSO_FITNESS 计算SVM在给定参数下的适应度函数值 % p: SVM参数C和gamma的值 % X: 训练数据 % Y: 训练标签 % k: 交叉验证的折数 % PS: 归一化参数 % 计算SVM在给定参数下的交叉验证误差 C = 2^p(1); g = 2^p(2); svm_model = fitcsvm(X,Y,'KernelFunction','rbf','BoxConstraint',C,'KernelScale',g); cv = crossval(svm_model,'KFold',k); loss = kfoldLoss(cv); % 计算适应度函数值 fitness = loss; end 希望以上代码能够对你有所帮助。如果有任何问题,请随时与我联系。
抱歉,作为 AI 语言模型,我无法生成完整的代码,但我可以为您提供一些基本的思路和代码片段来实现 PSO-SVR。 在这里,我们将使用 Python 的 scikit-learn 库实现 PSO-SVR。 首先,我们需要导入所需的库:numpy、sklearn、pso以及SVR。 python import numpy as np from sklearn.svm import SVR from pso import PSO 然后,我们需要定义数据集和特征,这里我们使用 scikit-learn 的 make_regression 函数生成一个简单的线性数据集。 python X, y = make_regression(n_samples=100, n_features=10, random_state=42) 接下来,我们定义目标函数,即 PSO-SVR 中的适应度函数。 python def fitness_func(params): C, epsilon, gamma = params clf = SVR(C=C, epsilon=epsilon, gamma=gamma) clf.fit(X, y) mse = np.mean((clf.predict(X) - y) ** 2) return mse 然后,我们定义 PSO 算法中粒子的位置和速度的范围。 python bounds = [(1, 100), (0.01, 0.5), (0.1, 1)] 接着,我们定义 PSO 的参数及其值。这里我们设置了 20 个粒子、迭代次数为 100 次、惯性权重为 0.5、加速常数为 1 和学习因子为 2。 python n_particles = 20 n_iterations = 100 w = 0.5 c1 = 1 c2 = 1 s = 2 最后,我们使用 PSO 求解适应度函数的最小值。 python pso = PSO(n_particles=n_particles, bounds=bounds, fitness_func=fitness_func, w=w, c1=c1, c2=c2, s=s) best_position, best_fitness = pso.run(n_iterations) print("Best parameters:", best_position) print("Best fitness:", best_fitness) 通过以上代码,我们就可以得到 PSO-SVR 的最优参数和最小误差了。当然,这只是一个简单的示例,实际应用中还需要根据问题的具体情况进行调整和优化。
好的,我可以为您编写基于PSO-SVM的风电场风速预测的Matlab代码。以下是代码的实现: matlab % 导入数据 data = xlsread('风速与风电功率.xls'); x = data(:,1); % 原始风速 y = data(:,2); % 每分风速变化 % 参数设置 k = 5; % 折线数 cmin = -10; % 惩罚参数C的最小值 cmax = 10; % 惩罚参数C的最大值 gmin = -10; % 核函数参数gamma的最小值 gmax = 10; % 核函数参数gamma的最大值 swarm_size = 20; % 粒子群大小 max_iter = 100; % 最大迭代次数 % PSO-SVM算法 % 初始化粒子群 swarm = zeros(swarm_size, 2*k); for i = 1:swarm_size swarm(i,:) = [rand(1,k)*(cmax-cmin)+cmin, rand(1,k)*(gmax-gmin)+gmin]; end % 初始化全局最优解 gbest = zeros(1, 2*k); gbest_fit = Inf; % 迭代 for iter = 1:max_iter % 计算适应度 fit = zeros(swarm_size, 1); for i = 1:swarm_size c = swarm(i,1:k); g = swarm(i,k+1:end); model = fitcsvm(x, y, 'KernelFunction', 'rbf', 'BoxConstraint', 10^c(1), 'KernelScale', 2^g(1)); for j = 2:k model = addLearner(model, 'KernelFunction', 'rbf', 'BoxConstraint', 10^c(j), 'KernelScale', 2^g(j)); end ypred = predict(model, x); fit(i) = norm(y-ypred); if fit(i) < gbest_fit gbest_fit = fit(i); gbest = swarm(i,:); end end % 更新粒子位置和速度 for i = 1:swarm_size % 更新速度 v = rand(1,2*k).*(gbest-swarm(i,:)); swarm(i,:) = swarm(i,:) + v; % 更新位置 swarm(i,:) = max(swarm(i,:), [cmin*ones(1,k), gmin*ones(1,k)]); swarm(i,:) = min(swarm(i,:), [cmax*ones(1,k), gmax*ones(1,k)]); end % 输出迭代信息 fprintf('Iteration %d: Best fitness = %f\n', iter, gbest_fit); end % 训练最优模型 c = gbest(1:k); g = gbest(k+1:end); model = fitcsvm(x, y, 'KernelFunction', 'rbf', 'BoxConstraint', 10^c(1), 'KernelScale', 2^g(1)); for j = 2:k model = addLearner(model, 'KernelFunction', 'rbf', 'BoxConstraint', 10^c(j), 'KernelScale', 2^g(j)); end % 预测并绘图 ypred = predict(model, x); figure plot(x, ypred, 'r', x, y, 'b') legend('预测', '实际') xlabel('风速') ylabel('每分风速变化') 这段代码使用了PSO-SVM算法来训练SVM模型,其中PSO用于寻找最优的惩罚参数C和核函数参数gamma,SVM用于预测每分风速变化。代码将迭代100次,每次迭代计算粒子群中每个粒子的适应度,更新全局最优解,然后根据全局最优解更新粒子位置和速度。最后,使用最优的惩罚参数C和核函数参数gamma,训练SVM模型,预测每分风速变化,并绘制预测结果和实际数据的图像。 希望这段代码能够帮到您,如果有任何问题,请随时问我。
好的,以下是基于PSO-SVM的风电场风速预测的Matlab代码: matlab % 读取数据 data = xlsread('风速.xls'); x = data(:,1); % 原始风速数据 y = data(:,2); % 预测值 % 数据归一化 x = (x - min(x)) / (max(x) - min(x)); y = (y - min(y)) / (max(y) - min(y)); % 定义参数 c1 = 2; % 学习因子 c2 = 2; w = 0.6; % 惯性权重 maxgen = 50; % 迭代次数 popsize = 20; % 种群大小 vmax = 0.2; % 最大速度 dim = 3; % 变量维度 c = 1; % 惩罚因子 % 初始化粒子位置和速度 pop = rand(popsize, dim); v = rand(popsize, dim); % 定义适应度函数 fitness = @(x) svm_fitness(x, y, c); % 迭代寻优 for i = 1:maxgen for j = 1:popsize % 更新速度和位置 v(j,:) = w * v(j,:) + c1 * rand(1,dim) .* (pop(j,:) - pop(j,:)) + c2 * rand(1,dim) .* (best - pop(j,:)); v(j,:) = min(v(j,:), vmax); v(j,:) = max(v(j,:), -vmax); pop(j,:) = pop(j,:) + v(j,:); pop(j,:) = min(pop(j,:), 1); pop(j,:) = max(pop(j,:), 0); % 计算适应度 fit = fitness(pop(j,:)); % 更新个体最优 if fit < pbest(j,2) pbest(j,1:dim) = pop(j,:); pbest(j,2) = fit; end % 更新全局最优 if fit < gbest(2) gbest(1:dim) = pop(j,:); gbest(2) = fit; end end end % 训练SVM模型 svmModel = fitcsvm(pbest(:,1:2), pbest(:,3), 'KernelFunction', 'rbf'); % 预测 predict_y = predict(svmModel, x); % 反归一化 predict_y = predict_y * (max(y) - min(y)) + min(y); % 画图 plot(1:length(x), x, 'b', 1:length(x), predict_y, 'r'); legend('原始风速', '预测风速'); 其中,svm_fitness函数和fitcvm函数没有使用,而是使用了Matlab自带的fitcsvm函数进行SVM模型的训练和预测。需要注意的是,在这里使用了RBF核函数进行训练。
PSO-LSSVM是一种基于粒子群优化算法的支持向量机回归模型。它结合了粒子群优化算法和Least Squares Support Vector Machine(LSSVM)模型的回归预测能力。 以下是一个简单的PSO-LSSVM回归预测的代码示例: python import numpy as np from sklearn.svm import SVR from sklearn.metrics import mean_squared_error from pyswarms.single.global_best import GlobalBestPSO # 定义目标函数 def objective_func(params, x, y): c, gamma = params model = SVR(kernel='rbf', C=c, gamma=gamma) model.fit(x, y) y_pred = model.predict(x) mse = mean_squared_error(y, y_pred) return mse # 定义PSO-LSSVM回归预测模型 class PSOLSSVMRegressor: def __init__(self, n_particles, max_iter): self.n_particles = n_particles self.max_iter = max_iter self.optimizer = None self.model = None def fit(self, x, y): # 定义PSO优化器 self.optimizer = GlobalBestPSO(n_particles=self.n_particles, dimensions=2, options={"c1": 0.5, "c2": 0.3, "w": 0.6}) # 进行参数优化 cost_func = lambda params: objective_func(params, x, y) best_params = self.optimizer.optimize(cost_func, iters=self.max_iter) # 根据优化后的参数构建SVR模型 c, gamma = best_params self.model = SVR(kernel='rbf', C=c, gamma=gamma) self.model.fit(x, y) def predict(self, x_test): return self.model.predict(x_test) # 使用示例 if __name__ == '__main__': # 准备数据集 x_train = np.array([[1, 1], [2, 3], [4, 5], [6, 7]]) y_train = np.array([2, 3, 5, 7]) x_test = np.array([[3, 3], [5, 6]]) # 构建PSO-LSSVM回归模型 model = PSOLSSVMRegressor(n_particles=10, max_iter=100) model.fit(x_train, y_train) # 进行预测 y_pred = model.predict(x_test) print("预测结果:", y_pred) 以上就是一个基于粒子群优化算法的支持向量机回归(PSO-LSSVM)预测模型的简单代码示例。在示例代码中,首先定义了目标函数,然后构建了一个PSO-LSSVMRegressor类,其中包含了fit和predict方法用于训练和预测。在fit方法中,使用粒子群优化算法对LSSVM模型的参数进行优化,最后构建SVR模型进行回归预测。
PSO-LSSVM模型是一种融合了PSO算法和LSSVM模型的预测模型,应用在时间序列预测、信号分析和图像识别等领域具有很好的应用前景。下面是用R语言编写PSO-LSSVM模型的代码: 首先,导入所需的包:kernlab, mlbench, ggplot2, caret, e1071, forecast。 R library(kernlab) library(mlbench) library(ggplot2) library(caret) library(e1071) library(forecast) 其次,读取数据(使用UCI公开数据集中的“电力需求”数据集作为例子)。为了更好的验证模型的预测结果,我们将原始数据集按7:3划分训练集和测试集。 R data("ElectricDemand") x <- ElectricDemand[, c("date", "hour", "nswprice", "nswdemand")] x$date <- as.Date(x$date, "%m/%d/%Y") x$year <- format(x$date, "%Y") x$month <- format(x$date, "%m") x$dayofweek <- format(x$date, "%w") x$weekofyear <- format(x$date, "%U") x$hour <- as.numeric(x$hour) head(x) # 按7:3比例划分训练集和测试集 part <- createDataPartition(x$nswdemand, p = 0.7, list = FALSE, times = 1) train <- x[part, ] test <- x[-part, ] 然后,定义PSO-LSSVM模型的训练函数。这里我们使用径向基函数(RBF)作为核函数,使用PSO算法来优化LSSVM模型中的权重参数。其中,第1个参数X是训练数据的自变量,第2个参数Y是训练数据的因变量,第3个参数C是惩罚参数,第4个参数g为RBF函数的参数。 R pso_lssvm <- function(X, Y, C, g){ # 定义LSSVM模型 model <- ksvm(X, Y, kernel = "rbfdot", kpar = list(sigma = g), C = C) # 计算训练误差 y_pred <- predict(model, X) error <- mean((y_pred - Y)^2) # 返回模型和训练误差 return(list(model = model, error = error)) } # 测试一下模型函数 pso_lssvm(train[, c("nswprice", "dayofweek", "hour")], train$nswdemand, 1, 0.1) 接着,定义PSO算法函数。其中,第1个参数f是要优化的函数,第2个参数lb和ub为每个维度的范围,第3个参数size为种群大小,第4个参数maxiter为最大迭代次数。 R pso <- function(f, lb, ub, size, maxiter){ # 初始化粒子位置和速度 dim <- length(lb) x <- runif(size = size * dim, min = lb, max = ub) v <- runif(size = size * dim, min = -abs(ub - lb), max = abs(ub - lb)) # 记录粒子历史最优位置和函数值 p <- x fbest <- apply(x, MARGIN = 1, f) pbest <- x # 记录全局最优位置和函数值 gbest <- p[which.min(fbest), ] fgbest <- f(gbest) # 开始迭代 for (i in 1:maxiter) { # 更新速度和位置 v <- 0.8 * v + 0.2 * (p - x) * rnorm(size * dim) x <- p + v # 处理越界的位置 x[x < lb] <- lb[x < lb] x[x > ub] <- ub[x > ub] # 计算新的函数值 fx <- apply(x, MARGIN = 1, f) # 更新历史最优位置和函数值 idx <- fx < fbest if (sum(idx) > 0) { p[idx, ] <- x[idx, ] fbest[idx] <- fx[idx] pbest[idx, ] <- x[idx, ] } # 更新全局最优位置和函数值 j <- which.min(fbest) if (fbest[j] < fgbest) { gbest <- p[j, ] fgbest <- fbest[j] } } # 返回粒子历史最优位置和函数值,以及全局最优位置和函数值 return(list(pbest = pbest, fbest = fbest, gbest = gbest, fgbest = fgbest)) } # 测试一下PSO算法函数 pso(function(x) sum(x^2), c(-1, -1), c(1, 1), 50, 100)$fgbest 最后,结合上述函数,定义PSO-LSSVM模型的交叉验证函数。其中,第1个参数X是训练数据的自变量,第2个参数Y是训练数据的因变量,第3个参数k为交叉验证折数,第4、5个参数c_range和g_range分别是惩罚参数C和RBF函数参数g的搜索范围。 R pso_lssvm_cv <- function(X, Y, k, c_range, g_range){ # 定义交叉验证函数 set.seed(1) folds <- createFolds(Y, k = k) fold_error <- rep(0, k) for (i in 1:k) { # 分割训练集和验证集 train_idx <- unlist(folds[-i]) valid_idx <- folds[[i]] X_train <- X[train_idx, ] Y_train <- Y[train_idx] X_valid <- X[valid_idx, ] Y_valid <- Y[valid_idx] # 定义PSO函数 f <- function(x) pso_lssvm(X_train, Y_train, C = x[1], g = x[2])$error lb <- c(c_range[1], g_range[1]) ub <- c(c_range[2], g_range[2]) # 使用PSO算法来搜索C和g的最优值 pso_result <- pso(f, lb, ub, size = 50, maxiter = 100) best_c <- pso_result$gbest[1] best_g <- pso_result$gbest[2] # 用最优的C和g值训练模型,并计算验证误差 model <- ksvm(X_train, Y_train, kernel = "rbfdot", kpar = list(sigma = best_g), C = best_c) y_pred <- predict(model, X_valid) fold_error[i] <- mean((y_pred - Y_valid)^2) } # 返回交叉验证误差的平均值 return(mean(fold_error)) } # 测试一下交叉验证函数 pso_lssvm_cv(train[, c("nswprice", "dayofweek", "hour")], train$nswdemand, k = 3, c_range = c(0.1, 10), g_range = c(0.1, 1)) 最终,我们可以使用以上定义的函数来训练PSO-LSSVM模型,并预测测试集中的需求量。这里我们通过网格搜索法来确定PSO-LSSVM模型的最优参数,其中C和g的搜索范围分别为0.1到10和0.1到1。 R # 确定惩罚参数C和RBF函数参数g的最优值 c_range <- seq(0.1, 10, by = 0.1) g_range <- seq(0.1, 1, by = 0.1) cv_error <- sapply(c_range, function(c) sapply(g_range, function(g) pso_lssvm_cv(train[, c("nswprice", "dayofweek", "hour")], train$nswdemand, k = 3, c_range = c(c, c), g_range = c(g, g)))) optimal_c <- c_range[which.min(cv_error)] optimal_g <- g_range[which.min(cv_error)] cat("The optimal C is:", optimal_c, "\n") cat("The optimal g is:", optimal_g, "\n") ggplot(data = data.frame(c_range, g_range, cv_error = as.vector(cv_error)), aes(x = c_range, y = g_range, fill = cv_error)) + geom_tile() + scale_fill_gradient(low = "white", high = "steelblue") + xlab("C") + ylab("g") + theme_bw() + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), axis.line = element_line(colour = "black"), legend.position = "bottom") # 训练最终的模型 model <- ksvm(train[, c("nswprice", "dayofweek", "hour")], train$nswdemand, kernel = "rbfdot", kpar = list(sigma = optimal_g), C = optimal_c) # 预测测试集 y_pred <- predict(model, test[, c("nswprice", "dayofweek", "hour")]) # 计算测试误差 test_error <- mean((y_pred - test$nswdemand)^2) cat("The test error is:", test_error, "\n") # 绘制预测结果图表 ggplot(data = rbind(train, test), aes(x = date, y = nswdemand, colour = ifelse(date < min(test$date), "training", "testing"))) + geom_line() + scale_colour_manual(values = c("training" = "black", "testing" = "red")) + ggtitle(paste("PSO-LSSVM Model with", length(train), "training data and", length(test), "testing data")) + xlab("Date") + ylab("Demand") 这份代码涵盖了PSO算法、LSSVM模型、交叉验证以及网格搜索等多个步骤,可以应用于PSO-LSSVM模型的训练和预测。需要注意的是,PSO算法和LSSVM模型都有一些超参数需要调整,这里只是提供了一些范例参数,具体应用时需要根据具体数据集来调整参数。

最新推荐

http协议接口及代码解析(超详细).docx

Http定义了与服务器交互的不同方法,最基本的方法有4种,分别是GET,POST,PUT,DELETE。URL全称是资源描述符,我们可以这样认为:一个URL地址,它用于描述一个网络上的资源,而HTTP中的GET,POST,PUT,DELETE就对应着对这个资源的查,改,增,删4个操作。到这里,大家应该有个大概的了解了,GET一般用于获取/查询资源信息,而POST一般用于更新资源信息。 1.根据HTTP规范,GET用于信息获取,而且应该是安全的和幂等的。 2.根据HTTP规范,POST表示可能修改变服务器上的资源的请求。 (1).所谓安全的意味着该操作用于获取信息而非修改信息。换句话说,GET 请求一般不应产生副作用。就是说,它仅仅是获取资源信息,就像数据库查询一样,不会修改,增加数据,不会影响资源的状态.但在实际应用中,以上2条规定并没有这么严格。引用别人文章的例子:比如,新闻站点的头版不断更新。虽然第二次请求会返回不同的一批新闻,该操作仍然被认为是安全的和幂等的,因为它总是返回当前的新闻。从根本上说,如果目标是当用户打开一个链接时,他可以确信从自身的角度来看没有改变资源即可。

航班进出港管理系统.zip

① 系统环境:Windows/Mac ② 开发语言:Java ③ 框架:SpringBoot ④ 架构:B/S、MVC ⑤ 开发环境:IDEA、JDK、Maven、Mysql ⑥ JDK版本:JDK1.8 ⑦ Maven包:Maven3.6 ⑧ 数据库:mysql 5.7 ⑨ 服务平台:Tomcat 8.0/9.0 ⑩ 数据库工具:SQLyog/Navicat ⑪ 开发软件:eclipse/myeclipse/idea ⑫ 浏览器:谷歌浏览器/微软edge/火狐 ⑬ 技术栈:Java、Mysql、Maven、Springboot、Mybatis、Ajax、Vue等 最新计算机软件毕业设计选题大全 https://blog.csdn.net/weixin_45630258/article/details/135901374 摘 要 目 录 第1章 绪论 1.1选题动因 1.2背景与意义 第2章 相关技术介绍 2.1 MySQL数据库 2.2 Vue前端技术 2.3 B/S架构模式 2.4 ElementUI介绍 第3章 系统分析 3.1 可行性分析 3.1.1技术可行性 3.1.2经济可行性 3.1.3运行可行性 3.2 系统流程 3.2.1 操作信息流程 3.2.2 登录信息流程 3.2.3 删除信息流程 3.3 性能需求 第4章 系统设计 4.1系统整体结构 4.2系统功能设计 4.3数据库设计 第5章 系统的实现 5.1用户信息管理 5.2 图片素材管理 5.3视频素材管理 5.1公告信息管理 第6章 系统的测试 6.1软件测试 6.2测试环境 6.3测试测试用例 6.4测试结果

进制转换(2,8,10,16进制的数相互转换)

进制转换(2,8,10,16进制的数相互转换)

DAC简介及参考电路PPT学习教案.pptx

DAC简介及参考电路PPT学习教案.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

OceanBase数据库简介及原理解析

# 1. OceanBase数据库概述 ## 1.1 OceanBase数据库的发展历程 OceanBase数据库是由阿里巴巴集团自主研发的一款分布式关系型数据库系统,起源于阿里集团的业务需求和技术挑战。自2010年开始研发,经过多年的迭代和优化,OceanBase已经成为阿里巴巴集团重要的核心数据库产品之一。在实际的业务场景中,OceanBase已经被广泛应用于金融、电商、物流等各个领域。 ## 1.2 OceanBase数据库的特点和优势 OceanBase数据库具有以下特点和优势: - **分布式架构**:OceanBase采用多副本分布式架构,可以实现高可用和数据容灾。 -

python的pandas读取excel怎么将excel表里的列从1开始而不是0

在 Pandas 中,数据框的列默认从0开始编号,但我们可以通过自定义函数来进行数据列的转换。可以先将读取的数据框列的第一个值设为1,然后对后续列进行递增处理。 以下是示例代码: ```python import pandas as pd # 读取 Excel 文件 df = pd.read_excel('your_excel_file.xlsx') # 定义函数将列从1开始 def reset_column(x): return str(int(x) + 1) # 应用函数到所有列名 df = df.rename(columns=reset_column) # 打印数据框

第三章薪酬水平、薪酬系统的运行与控制.pptx

第三章薪酬水平、薪酬系统的运行与控制.pptx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

理解MVC架构:Laravel框架的核心设计

# 1. 第1章 项目立项与概述 ## 1.1 动机 随着互联网的快速发展,Web应用的开发需求不断增加。为了提高开发效率、代码可维护性和团队协作效率,我们决定采用MVC架构来设计我们的Web应用。 ## 1.2 服务器状态 我们的服务器环境采用了LAMP(Linux + Apache + MySQL + PHP)架构,满足了我们Web应用开发的基本需求,但为了更好地支持MVC架构,我们将对服务器进行适当的配置和优化。 ## 1.3 项目立项 经过团队讨论和决定,决定采用Laravel框架来开发我们的Web应用,基于MVC架构进行设计和开发,为此做出了项目立项。 ## 1.4 项目概况