用遗传算法解决agv路径规划matlab
时间: 2023-08-23 11:38:14 浏览: 133
下面是一个用遗传算法解决AGV路径规划问题的MATLAB代码示例:
```matlab
% 生成地图
map = zeros(10,10);
map(3:8,3:4) = 1;
map(3:5,5:6) = 1;
map(7:8,7:8) = 1;
% 定义目标点和起点
start_point = [1,1];
end_point = [10,10];
% 定义参数
options = gaoptimset('PopulationSize', 100, 'Generations', 200, 'CrossoverFraction', 0.8, 'MutationFcn', {@mutationuniform, 0.05});
% 定义适应度函数
fitnessfcn = @(x) path_length(map, start_point, end_point, x);
% 运行遗传算法
[x, fval] = ga(fitnessfcn, length(map(:)), [], [], [], [], zeros(size(map(:))), ones(size(map(:))), [], options);
% 将一维路径转换成二维路径
path = reshape(x, size(map));
% 显示路径
imshow(map);
hold on;
plot(start_point(2), start_point(1), 'ro');
plot(end_point(2), end_point(1), 'gx');
plot(find(path), 'r');
```
在上面的代码中,`map` 是 AGV 路径规划的地图,`start_point` 和 `end_point` 分别是起始点和目标点。`options` 是遗传算法的参数设置,`fitnessfcn` 是适应度函数,用于评估路径规划的优劣。`path_length` 函数用于计算路径长度。在运行遗传算法之后,得到的最优解 `x` 是一维路径,需要通过 `reshape` 函数将其转换为二维路径。最后,使用 `imshow` 和 `plot` 函数将路径显示出来。
阅读全文