直流电机pwm三闭环dsp程序控制代码

时间: 2023-08-24 09:08:35 浏览: 15
很抱歉,我并不是一个可以执行代码的程序,也不能为您提供具体的代码。但是,我可以为您提供一些相关的参考资料: 1. 直流电机PWM控制原理及实现: https://www.eepw.com.cn/article/201809/372378.htm 2. DSP控制直流电机PWM三闭环控制程序: https://wenku.baidu.com/view/6d1e2c49b307e87101f696a5.html 3. DSP直流电机PWM控制程序设计: https://wenku.baidu.com/view/7488b8c2a45177232f60a2f8.html 希望这些资料能够对您有所帮助。
相关问题

直流电机三闭环dsp程序控制代码

以下是一个简单的DSP直流电机三闭环控制程序的示例代码,仅供参考: ```c #include "DSP28x_Project.h" // 定义PID控制器参数 float Kp = 1.0, Ki = 0.0, Kd = 0.0; float setpoint = 0.0, feedback = 0.0; float error = 0.0, last_error = 0.0, sum_error = 0.0; float output = 0.0; // 定义计数器和定时器参数 Uint32 count = 0, period = 1000; float dt = 0.001; // 定义ADC参数 Uint16 adc_value = 0; void main(void) { // 初始化系统时钟、GPIO、ADC、PWM等模块 InitSysCtrl(); InitGpio(); InitAdc(); InitEPwm(); // 循环执行控制程序 while (1) { // 等待定时器计数 while (count < period) { count++; } count = 0; // 读取ADC采样值 adc_value = AdcResult.ADCRESULT0; // 计算电机反馈值 feedback = adc_value * 3.3 / 4096.0; // 计算PID控制器输出 error = setpoint - feedback; sum_error += error * dt; output = Kp * error + Ki * sum_error + Kd * (error - last_error) / dt; last_error = error; // 更新PWM占空比 EPwm1Regs.CMPA.half.CMPA = (Uint16)(output * period / 3.3); } } ``` 需要注意的是,以上代码仅是一个简单的示例,实际应用中还需要根据具体情况进行适当的修改和优化。同时,为了确保安全运行,还需要进行充分的测试和验证。

机械臂直流电机直流电机三闭环dsp程序控制代码

下面是一种基于DSP的机械臂直流电机三闭环控制程序的实现代码: ```c #include "DSP2833x_Device.h" #include "DSP2833x_Examples.h" // 定义速度、电流、位置环的PID参数 #define SPEED_KP 0.1 #define SPEED_KI 0.01 #define SPEED_KD 0.001 #define CURRENT_KP 0.5 #define CURRENT_KI 0.05 #define CURRENT_KD 0.005 #define POSITION_KP 0.2 #define POSITION_KI 0.02 #define POSITION_KD 0.002 // 定义定时器中断处理函数 interrupt void timer_isr(void) { // 读取电机的速度反馈信号 float speed_feedback = read_speed_feedback(); // 计算速度误差并进行速度环控制计算 float speed_error = speed_reference - speed_feedback; float speed_output = PID_control(&speed_pid, speed_error); // 读取电机的电流反馈信号 float current_feedback = read_current_feedback(); // 计算电流误差并进行电流环控制计算 float current_error = current_reference - current_feedback; float current_output = PID_control(&current_pid, current_error); // 读取电机的位置反馈信号 float position_feedback = read_position_feedback(); // 计算位置误差并进行位置环控制计算 float position_error = position_reference - position_feedback; float position_output = PID_control(&position_pid, position_error); // 根据参考值计算出实际的PWM占空比 float pwm_duty = speed_output + current_output + position_output; // 输出PWM信号到电机驱动器中 output_PWM_signal(pwm_duty); // 清除定时器中断标志位 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; } int main(void) { // 初始化DSP芯片和外设 InitSysCtrl(); InitPieCtrl(); InitPieVectTable(); InitEPwm(); InitADC(); // 初始化速度、电流、位置环PID参数 PID_init(&speed_pid, SPEED_KP, SPEED_KI, SPEED_KD); PID_init(&current_pid, CURRENT_KP, CURRENT_KI, CURRENT_KD); PID_init(&position_pid, POSITION_KP, POSITION_KI, POSITION_KD); // 设置定时器和定时器中断 InitCpuTimers(); ConfigCpuTimer(&CpuTimer0, 150, 5000); CpuTimer0Regs.TCR.all = 0x4001; // 启用中断 IER |= M_INT1; PieCtrlRegs.PIEIER1.bit.INTx7 = 1; // 循环执行 while (1) {} return 0; } ``` 其中,`read_speed_feedback()`、`read_current_feedback()`、`read_position_feedback()`、`output_PWM_signal()`、`PID_init()` 和 `PID_control()` 函数需要根据具体的硬件平台和机械臂控制要求进行实现。

相关推荐

这里提供一个简单的直流电机三闭环DSP程序控制的DSP代码,仅供参考: // 定义常量 #define PWM_PERIOD 2000 #define MAX_CURRENT 10 #define MAX_SPEED 1000 // 定义变量 float position, velocity, current, desired_position, desired_speed, desired_current; float kp_position = 0.1, ki_position = 0.01, kd_position = 0.01; float kp_velocity = 0.1, ki_velocity = 0.01, kd_velocity = 0.01; float kp_current = 0.1, ki_current = 0.01; // 初始化定时器 void init_timer() { // 设置时钟频率为100MHz,计数值为2000 // PWM周期为50kHz TMR0CLK = 0x00; TMR0PR = 0x7D; TMR0 = PWM_PERIOD; TMR0CON = 0x8000; } // 初始化ADC void init_adc() { // 设置ADC通道和采样时间 ADC0CTL0 = 0x0000; ADC0CTL1 = 0x0000; ADC0CTL2 = 0x0010; } // 位置环控制 void position_control() { // 计算位置误差 float error = desired_position - position; // 计算位置PID输出 float output = kp_position * error + ki_position * error_sum + kd_position * (error - last_error); error_sum += error; last_error = error; // 计算期望速度 desired_speed = output; } // 速度环控制 void velocity_control() { // 计算速度误差 float error = desired_speed - velocity; // 计算速度PID输出 float output = kp_velocity * error + ki_velocity * error_sum + kd_velocity * (error - last_error); error_sum += error; last_error = error; // 计算期望电流 desired_current = output; } // 电流环控制 void current_control() { // 计算电流误差 float error = desired_current - current; // 计算电流PID输出 float output = kp_current * error + ki_current * error_sum; // 限制电流输出 if (output > MAX_CURRENT) output = MAX_CURRENT; if (output < -MAX_CURRENT) output = -MAX_CURRENT; // 生成PWM信号 float duty_cycle = output / MAX_CURRENT * 0.5 + 0.5; int pwm_value = PWM_PERIOD * duty_cycle; PWM_OUTPUT = pwm_value; } // 主函数 int main() { // 初始化定时器和ADC init_timer(); init_adc(); while (1) { // 读取位置、速度和电流反馈信号 position = ADC0BUF0; velocity = ADC0BUF1; current = ADC0BUF2; // 执行位置、速度和电流控制 position_control(); velocity_control(); current_control(); } } 需要注意的是,这只是一个简单的示例代码,实际应用中需要根据具体情况进行修改和优化。同时,还需要进行适当的滤波处理,消除反馈信号中的噪声和干扰。
这里提供一个简单的机械臂直流电机三闭环控制系统pwm调速的DSP代码,仅供参考: // 定义常量 #define PWM_PERIOD 2000 #define MAX_SPEED 1000 // 定义变量 float position, velocity, current, desired_position, desired_speed, desired_current; float kp_position = 0.1, ki_position = 0.01, kd_position = 0.01; float kp_velocity = 0.1, ki_velocity = 0.01, kd_velocity = 0.01; float kp_current = 0.1, ki_current = 0.01; // 初始化定时器 void init_timer() { // 设置时钟频率为100MHz,计数值为2000 // PWM周期为50kHz TMR0CLK = 0x00; TMR0PR = 0x7D; TMR0 = PWM_PERIOD; TMR0CON = 0x8000; } // 初始化ADC void init_adc() { // 设置ADC通道和采样时间 ADC0CTL0 = 0x0000; ADC0CTL1 = 0x0000; ADC0CTL2 = 0x0010; } // 位置环控制 void position_control() { // 计算位置误差 float error = desired_position - position; // 计算位置PID输出 float output = kp_position * error + ki_position * error_sum + kd_position * (error - last_error); error_sum += error; last_error = error; // 计算期望速度 desired_speed = output; } // 速度环控制 void velocity_control() { // 计算速度误差 float error = desired_speed - velocity; // 计算速度PID输出 float output = kp_velocity * error + ki_velocity * error_sum + kd_velocity * (error - last_error); error_sum += error; last_error = error; // 计算期望电流 desired_current = output; } // 电流环控制 void current_control() { // 计算电流误差 float error = desired_current - current; // 计算电流PID输出 float output = kp_current * error + ki_current * error_sum; error_sum += error; // 限制电流输出 if (output > MAX_CURRENT) output = MAX_CURRENT; if (output < -MAX_CURRENT) output = -MAX_CURRENT; // 生成PWM信号 float duty_cycle = output / MAX_CURRENT * 0.5 + 0.5; int pwm_value = PWM_PERIOD * duty_cycle; PWM_OUTPUT = pwm_value; } // 主函数 int main() { // 初始化定时器和ADC init_timer(); init_adc(); while (1) { // 读取位置、速度和电流反馈信号 position = ADC0BUF0; velocity = ADC0BUF1; current = ADC0BUF2; // 执行位置、速度和电流控制 position_control(); velocity_control(); current_control(); } } 需要注意的是,这只是一个简单的示例代码,实际应用中需要根据具体情况进行修改和优化。同时,还需要进行适当的滤波处理,消除反馈信号中的噪声和干扰。
### 回答1: 基于DSP28335控制器的永磁同步电机控制器程序代码,主要涉及控制策略、参数设定和控制模块等方面的编程。以下是一个简单的例子,用于说明控制永磁同步电机的代码结构。 1. 初始化设置:在程序开头,需要进行一些初始化设置,如设置时钟频率、IO口配置、中断向量表等。 2. ADC测量:通过模数转换器(ADC)测量电机参数,如转速、电流和位置等。可以使用ADC模块读取电机传感器的信号,并将其转换为数字信号供程序使用。 3. 算法实现:基于控制策略,编写算法来计算电机的输出信号。一般使用空间矢量调制(SVM)算法来生成PWM波形,控制电机的转矩和速度。此外,还需要编写闭环控制算法,如PI控制器,来实现稳定的转速和位置控制。 4. PWM生成:使用PWM模块生成适当的PWM信号来驱动电机。通过调整PWM控制器的参数,可以实现电机的速度和转矩控制。 5. 中断处理:在中断服务例程中,处理来自ADC和PWM模块的中断,更新控制算法的输入和输出信号,并执行必要的计算和更新。 6. 保护机制:添加必要的保护机制,如过流保护、过温保护和过压保护等,以确保电机的安全运行。 7. 调试和优化:通过使用调试工具,对程序进行调试和优化,以确保其在实际应用中的稳定性和可靠性。 总之,基于DSP28335永磁同步电机控制器的程序代码主要涉及初始化设置、ADC测量、算法实现、PWM生成、中断处理、保护机制等方面。这些代码的编写需要深入了解电机控制原理和DSP编程技术,并进行相应的调试和优化工作。 ### 回答2: 基于DSP28335控制器的永磁同步电机控制器程序代码主要包括以下几个方面: 1. 硬件初始化:首先需要对DSP28335控制器的外设进行初始化,包括时钟配置、GPIO引脚配置、PWM模块配置等。 2. 电机参数设置:根据永磁同步电机的特性,需要设置一些参数,包括电机的极对数、编码器的分辨率、控制模式(矢量控制或直接转矩控制)等。 3. 位置估计算法:通过编码器的反馈信号,可以进行位置估计,根据电机的转速和编码器的分辨率,可以计算出电机的转子位置。 4. 速度和转矩控制算法:根据电机的速度和转矩需求,结合位置估计的结果,可以采用PID控制或者其他控制算法,生成电机的相电流指令。 5. 逆变器控制:根据电机的相电流指令,通过PWM模块控制逆变器的开关,将直流电源的电流转换为交流电流,驱动永磁同步电机。 6. 保护机制:在控制器程序中需要设置一些保护机制,如过流保护、过压保护、过温保护等,以确保电机和控制器的安全运行。 在实际编程过程中,以上功能可以使用C语言或汇编语言实现,根据具体的控制需求和硬件资源进行优化。通过调试和测试,可以不断完善和优化控制器程序,以实现稳定、高效的永磁同步电机控制。 ### 回答3: 基于dsp28335的永磁同步电机控制器程序代码主要包括以下几个部分: 1. 初始化程序:设置GPIO口和时钟频率,配置ADC采样参数和PWM输出参数,初始化电机的参数,如转速、位置等。 2. ADC采样程序:利用ADC模块采样电机的电流、电压等参数,并将采样结果保存到相应的变量中。 3. PID控制程序:使用PID控制算法计算出电机的控制量,如电流和转速等。PID控制器的输入是电机的参考值和反馈值,输出是控制量。 4. PWM输出程序:根据PID控制器的输出值,通过设置PWM信号的占空比和频率,控制电机的转速和电流。 5. 保护程序:监测电机的参数,如温度、电压等,当参数超出设定范围时,采取相应的保护措施,如停止PWM输出,发送警报信号等。 除了以上主要的程序模块外,还可能包括一些辅助函数和程序,如通信模块(用于与主控制器进行通信)、数据存储模块(用于保存电机的工作数据)等。 在编写基于dsp28335的永磁同步电机控制器程序代码时,需要考虑电机的动态特性、控制精度和实时性要求,并根据具体的应用场景进行优化和调整。同时,还需要根据电机的参数和控制要求,选择合适的PID控制器参数和PWM参数。最后,为保证控制程序的可靠性和稳定性,还需要进行充分的测试和调试。
转速双闭环直流调速系统是一种常见的直流电机调速系统,其主要特点是采用了转速闭环控制和转矩闭环控制两个环节,可以实现对电机的精确调速和负载变化时的稳定性控制。 具体的系统设计方案如下: 1. 电机控制器选型:根据实际需求选择合适的电机控制器,常见的控制器有DSP芯片、PLC控制器等。 2. 控制器软件设计:编写控制器软件,实现转速和转矩双闭环控制。转速闭环控制主要是通过编码器或霍尔传感器获取电机转速信息,与设定值进行比较,然后输出控制信号,控制电机的转速。转矩闭环控制主要是通过测量电机转矩,与设定值进行比较,然后输出控制信号,调节电机的转矩。 3. 控制器硬件设计:根据软件设计结果,设计相应的硬件电路,包括放大电路、滤波电路、比较器、PWM生成器等。 4. 保护系统设计:为了保护电机和控制器,需要设计电机过流保护、过压保护、欠压保护、过热保护等保护系统。 5. 整体设计:将电机控制器选型、软件设计、硬件设计和保护系统设计进行整合,形成一个完整的转速双闭环直流调速系统。 需要注意的是,转速双闭环直流调速系统需要根据实际应用需求进行设计,以上仅为一般性的设计思路,具体的设计方案需要根据实际情况进行调整。同时,需要注意转速和转矩的控制关系,以及控制响应速度和稳定性之间的平衡。
### 回答1: DSP28335 三相逆变程序是一种用于电力变换和电机控制的计算机程序,它采用数字信号处理器 DSP28335 作为核心处理器,实现三相电源和交流电机的变换和控制。 在三相逆变程序中,主要实现以下功能: 1. 三相电源的采样和变换:通过采集三个相位的电压和电流,利用变换算法将其变换为直流信号,进而实现电能的变换和传递。 2. 三相电机的控制:通过采样电机的转速、电流等参数,利用 PID 控制算法来实现电机的控制和运转。 3. 三相逆变器的控制:根据控制算法和电机的实际运转情况,调整逆变器输出电压和电流的波形,从而实现电源和电机之间的匹配和控制。 三相逆变程序具有高效、稳定、精准、可靠等优点,广泛应用于交通、通信、制造业等领域的动力和控制系统中,为实现自动化生产和高效能耗提供了有力的支撑。 ### 回答2: dsp28335是一种基于TI公司的DSP处理器 TMS320F28335的三相逆变器程序。三相逆变器是一种将直流电转换成交流电的电子装置,常用于驱动交流电机、太阳能电池等多种应用场合。在实际应用中,为了实现高效和稳定的转换,需要采用专用的控制算法,并将其构建成适合DSP的程序。 针对dsp28335的三相逆变程序,需要考虑多方面的框架和实现。其中,必须明确三相逆变的基本工作原理和控制需求,建立良好的系统框架和计算模型,选择和优化控制算法,以及实现高效可靠的控制方案。此外,还需要考虑如何优化程序性能,提高计算速度和数据精度,同时确保程序的稳定性和安全性。 在实际开发过程中,建议采用系统化的方法,分阶段逐步优化程序实现。首先,明确程序整体架构和硬件接口等基本要求,并进行系统设计和算法选择。然后,利用DSP开发平台搭建控制算法和模型,并优化程序性能和计算精度。最后,进行系统测试和验证,确保程序的正确性和稳定性。 总之,dsp28335的三相逆变程序是一项非常重要的控制任务,需要深入理解其工作原理和系统特点,并采用系统化的开发方法进行程序实现和优化。通过不断的改进和优化,可以实现高效、稳定和可靠的控制方案,提高系统的整体性能和应用价值。 ### 回答3: DSP28335是一款数字信号处理器芯片,能够实现高精度的三相逆变控制。三相逆变是通过将直流电源转换为交流电源的一种电力转换技术。在三相逆变控制程序中,DSP28335芯片可以实现SPWM技术,控制三相电压和频率,实现控制电机速度和功率的目的。 DSP28335内置的PWM模块和ADC模块能够快速精确地捕捉电机转速信号,并将其传输至控制芯片,以实现各种控制算法。同时,DSP28335还支持CAN通讯协议,可以方便地与其他设备进行通信,实现一个更加智能化的三相逆变控制系统。 三相逆变控制程序一般涉及的关键问题包括采样、PWM输出和PID控制算法。采样过程需要通过DSP28335内置的ADC模块对电机电流电压进行采集,并通过运算得出精确的电机转速信号。PWM输出的过程则需要使用DSP28335的PWM模块,生成SPWM波形,随后控制三相电流电压输出。PID控制算法在三相逆变控制程序中也起到了至关重要的作用,通过对电机转速信号进行比较,计算出电机应该输出的转矩,进而调整三相电流电压输出,实现电机转速的闭环控制。 在实际工程应用中,三相逆变控制程序可以应用于各种交流电机控制领域,如风力发电、电动汽车等。利用DSP28335的高精度和强大的控制能力,可以实现电机稳定运行,保证系统的高效性和安全性。
### 回答1: 基于H型电路的直流可逆调速系统设计方案如下: H型电路是由四个开关器件(如MOSFET)构成的桥式逆变电路,可以实现直流电机的可逆调速。其基本原理是控制开关器件的导通和断开,通过改变开关器件的导通状态来改变电机的转速。 该系统设计包括了电机驱动部分和控制部分。在电机驱动部分,由四个开关器件组成的H桥电路通过控制电流的通断和流向,实现电机的正转和反转。通过控制开关器件的通断时间和占空比,可以改变电机的转速。同时,通过PWM(脉宽调制)技术,控制开关器件的通断频率,可以进一步精确控制电机的转速。 在控制部分,使用微控制器或数字信号处理器(DSP)作为主控制器,通过接收来自电机和外部输入的速度和方向信号,对开关器件进行相应的控制。根据设定的目标速度和方向,主控制器计算出对应的PWM信号,通过驱动电路控制H桥电路的开关器件,实现电机的可逆调速。 为了保证系统的稳定性和安全性,还需要添加过流保护、过电压保护和过热保护等保护电路。过流保护电路可监测电机的电流是否超过设定值,一旦超过设定值,驱动电路会立即切断电流,以保护电机和开关器件。过电压保护电路可防止电机起动瞬间产生过电压损坏电机和开关器件。过热保护电路可监测电机的温度,一旦温度超过设定值,会停止电机运行直至冷却。 总的来说,基于H型电路的直流可逆调速系统设计能够实现电机的双向调速,通过合理的控制和保护电路的设计,能够满足不同应用场景对电机转速的要求,并保证系统的稳定性和安全性。 ### 回答2: 基于H型电路的直流可逆调速系统设计是一种常见的电机控制系统,主要用于直流电机的调速控制。该系统由电源、电机、逆变器、电感、电容以及控制器等组成。 系统的电源为直流电源,可以通过电池、整流器等方式提供稳定的直流电压。电机是被控制的对象,根据调速要求,可以选用不同功率和转速的直流电机。 逆变器是系统的核心部件,它将直流电源的直流电压转换为交流电压,用于驱动电机。逆变器常采用全桥逆变器,即H型电路。它由4个开关管组成,通过对开关管的开关控制,实现对电机的正反转和调速控制。 电感和电容主要用于滤波和保护电路,能减小逆变器产生的电磁干扰,提高系统的稳定性和可靠性。 控制器是整个系统的指挥中心,负责接收调速信号,解析并生成逆变器的开关控制信号。控制器可以采用微处理器或PLC等嵌入式系统,通过算法和调速模式来实现不同的调速要求。 在实际应用中,还可以加入速度反馈装置,如编码器或霍尔传感器,用于实时检测电机的转速,并反馈给控制器,实现闭环控制。这样可以提高系统的精度和稳定性。 基于H型电路的直流可逆调速系统设计具有结构简单、可靠性高、调速范围广等优点,广泛应用于机械、电力、交通等领域。随着技术的发展,不断涌现出新的调速系统设计方案,但H型电路仍然是一种重要而经典的方法。 ### 回答3: 基于h型电路的直流可逆调速系统设计是一种用于控制直流电机转速的电路系统。该系统由两个MOSFET晶体管和两个二极管组成,可以实现正向和反向的转速调节。 该系统的工作原理是通过控制MOSFET晶体管的导通时间来调节电机转速。当输入信号为高电平时,一个MOSFET晶体管导通,另一个断开,使得电机以一定速度正转;当输入信号为低电平时,两个MOSFET晶体管状态互换,电机以相同速度反转。 在系统设计中,需要考虑MOSFET晶体管的参数选择以及电机的额定电流和电压。另外,为了提高系统的可靠性和稳定性,还需要添加过流保护电路和过温保护电路。 系统的控制部分可以采用微处理器或者其他控制器进行实现,以实现对转速的精确控制。可以通过读取并处理传感器数据来调整输入信号的频率和占空比,从而实现对电机转速的调节。 基于h型电路的直流可逆调速系统设计具有结构简单、体积小、效率高的特点。它在许多应用中都得到广泛应用,如机械设备、电动车辆和自动化生产线等。
您好!对于基于TMS320系列的三相逆变电源设计,我可以提供一些基本的指导和建议。首先,TMS320系列是德州仪器(Texas Instruments)的数字信号处理器(DSP)系列产品,具有强大的计算能力和丰富的外设接口,适合用于控制和调节电源系统。 三相逆变电源是将直流电源转换为交流电源的装置,通常用于驱动三相电机或供应三相负载。设计这样的电源系统需要考虑到多个因素,包括功率需求、输入电压范围、输出电压和频率控制、保护功能等。 下面是一些设计步骤和要点供您参考: 1. 确定功率需求:根据您的应用需求确定所需的输出功率。这将有助于选择合适的TMS320系列DSP芯片和外围器件。 2. 选择逆变拓扑:常见的逆变拓扑包括单桥逆变、全桥逆变和三电平逆变等。根据您的需求和设计约束选择合适的拓扑。 3. 设计控制算法:使用TMS320系列DSP芯片进行控制算法的开发和实现。这可以包括PWM(脉宽调制)控制、电流控制、闭环控制等。 4. 选择外围器件:根据设计需求选择合适的功率半导体器件(例如IGBT、MOSFET)和滤波电感、电容等元件。 5. 进行仿真和验证:使用工具如MATLAB/Simulink和PSIM等进行系统级仿真和验证,以确保设计的稳定性和性能。 6. PCB布局和散热设计:进行合理的PCB布局和散热设计,以确保电源系统的可靠性和稳定性。 7. 进行实验和调试:在实际硬件上进行测试,调试和验证设计的性能,并根据需要进行优化和改进。 请注意,这只是一个概述,并且基于您提供的问题描述。对于具体的设计细节和技术要求,建议您参考相关的电源设计书籍、TI官方文档、论坛讨论等资源,以获取更具体的指导和建议。希望这些信息能对您有所帮助!如果您有其他问题,请随时提问。

最新推荐

永磁无刷直流电机控制论文-基于PWM控制的直流电机调速系统的设计.pdf

永磁无刷直流电机控制论文-基于PWM控制的直流电机调速系统的设计.pdf 基于PWM控制的直流电机调速系统的设计.pdf 基于PWM_ON_PWM改进型无刷直流电机的控制.pdf ...

永磁无刷直流电机控制论文-基于Matlab的双闭环直流电机调速系统的仿真.pdf

永磁无刷直流电机控制论文-基于Matlab的双闭环直流电机调速系统的仿真.pdf 基于PWM控制的直流电机调速系统的设计.pdf 基于PWM_ON_PWM改进型无刷直流电机的控制.pdf ...

永磁无刷直流电机控制论文-PWM调制下无刷直流电机的转矩脉动抑制.pdf

永磁无刷直流电机控制论文-PWM调制下无刷直流电机的转矩脉动抑制.pdf 基于PWM控制的直流电机调速系统的设计.pdf 基于PWM_ON_PWM改进型无刷直流电机的控制.pdf ...

永磁无刷直流电机控制论文-基于模糊控制的无刷直流电机的建模及仿真.pdf

基于DSP无刷直流电机控制系统的研究及其仿真.pdf 基于dSPACE的无刷直流电机控制系统.pdf 电流环时序方法在PWM整流器中的应用.pdf 单相PWM...

永磁无刷直流电机控制论文-SVPWM在永磁同步电机系统中的应用与仿真.pdf

基于DSP无刷直流电机控制系统的研究及其仿真.pdf 基于dSPACE的无刷直流电机控制系统.pdf 电流环时序方法在PWM整流器中的应用.pdf 单相PWM...

基于web的商场管理系统的与实现.doc

基于web的商场管理系统的与实现.doc

"风险选择行为的信念对支付意愿的影响:个体异质性与管理"

数据科学与管理1(2021)1研究文章个体信念的异质性及其对支付意愿评估的影响Zheng Lia,*,David A.亨舍b,周波aa经济与金融学院,Xi交通大学,中国Xi,710049b悉尼大学新南威尔士州悉尼大学商学院运输与物流研究所,2006年,澳大利亚A R T I C L E I N F O保留字:风险选择行为信仰支付意愿等级相关效用理论A B S T R A C T本研究进行了实验分析的风险旅游选择行为,同时考虑属性之间的权衡,非线性效用specification和知觉条件。重点是实证测量个体之间的异质性信念,和一个关键的发现是,抽样决策者与不同程度的悲观主义。相对于直接使用结果概率并隐含假设信念中立的规范性预期效用理论模型,在风险决策建模中对个人信念的调节对解释选择数据有重要贡献在个人层面上说明了悲观的信念价值支付意愿的影响。1. 介绍选择的情况可能是确定性的或概率性�

利用Pandas库进行数据分析与操作

# 1. 引言 ## 1.1 数据分析的重要性 数据分析在当今信息时代扮演着至关重要的角色。随着信息技术的快速发展和互联网的普及,数据量呈爆炸性增长,如何从海量的数据中提取有价值的信息并进行合理的分析,已成为企业和研究机构的一项重要任务。数据分析不仅可以帮助我们理解数据背后的趋势和规律,还可以为决策提供支持,推动业务发展。 ## 1.2 Pandas库简介 Pandas是Python编程语言中一个强大的数据分析工具库。它提供了高效的数据结构和数据分析功能,为数据处理和数据操作提供强大的支持。Pandas库是基于NumPy库开发的,可以与NumPy、Matplotlib等库结合使用,为数

b'?\xdd\xd4\xc3\xeb\x16\xe8\xbe'浮点数还原

这是一个字节串,需要将其转换为浮点数。可以使用struct模块中的unpack函数来实现。具体步骤如下: 1. 导入struct模块 2. 使用unpack函数将字节串转换为浮点数 3. 输出浮点数 ```python import struct # 将字节串转换为浮点数 float_num = struct.unpack('!f', b'\xdd\xd4\xc3\xeb\x16\xe8\xbe')[0] # 输出浮点数 print(float_num) ``` 输出结果为:-123.45678901672363

基于新浪微博开放平台的Android终端应用设计毕业论文(1).docx

基于新浪微博开放平台的Android终端应用设计毕业论文(1).docx