path:不是std的成员 怎么解决这个错误

时间: 2024-02-21 21:01:13 浏览: 21
这个错误通常是由于编译器不支持C++17标准导致的。为了解决这个问题,你需要在项目的build.gradle文件中添加以下代码: ``` android { ... defaultConfig { ... externalNativeBuild { cmake { cppFlags "-std=c++17" } } } ... } ``` 这将在编译时使用C++17标准。如果你的项目使用的是NDK,则需要在Android.mk文件中添加以下代码: ``` APP_CPPFLAGS += -std=c++17 ``` 这应该能够解决这个问题。如果还有其他问题,请告诉我。
相关问题

“is_regular_file”: 不是“std::experimental::filesystem::v1::directory_entry”的成员

这个错误提示一般出现在你使用了`is_regular_file()`函数却没有包含正确的头文件或者没有正确地使用命名空间。`is_regular_file()`函数在C++17中被引入到文件系统库中,你需要确保你的编译器支持C++17,并且在代码中包含正确的头文件和命名空间: ```c++ #include <filesystem> //头文件 namespace fs = std::filesystem; //命名空间别名 int main() { fs::path p = "path/to/file"; if (fs::is_regular_file(p)) { //... } return 0; } ``` 如果你使用的是早期版本的C++或者编译器不支持C++17,可以使用Boost库中的文件系统库,使用方式类似,但是头文件和命名空间会有所不同。

error C2039: "visualize": 不是 "cv::HOGDescriptor" 的成员

这个错误提示意味着在 `cv::HOGDescriptor` 类中没有 `visualize` 成员函数。这个错误通常发生在你试图调用一个不存在的成员函数时。 如果你想要可视化 `cv::HOGDescriptor` 的结果,可以使用 `cv::Mat` 类来显示图像。你可以使用 `compute` 函数计算 `cv::HOGDescriptor` 的特征向量,然后将其转换为 `cv::Mat` 类型的图像。下面是一个示例代码: ```cpp cv::HOGDescriptor hog; hog.setSVMDetector(hog.getDefaultPeopleDetector()); cv::Mat img = cv::imread("path/to/image"); std::vector<cv::Rect> detections; hog.detectMultiScale(img, detections); for (const auto& det : detections) { cv::rectangle(img, det, cv::Scalar(0, 255, 0), 2); } cv::imshow("HOG", img); cv::waitKey(0); ``` 这个示例代码将加载一张图像,使用 `cv::HOGDescriptor` 检测人体目标,并在图像上绘制矩形框。最后,使用 `cv::imshow` 函数显示图像。

相关推荐

void MainWindow::moveAgvs() { Astar astar; std::vector<std::vector<Node*>> agv_paths(agvs.size()); // 将变量名改为 agv_paths //根據agv獲取taskid,初始化 int completed_task_index = -1; // 如果任務都完成了,停止定時器 bool all_tasks_completed = true; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].completed != 2) { all_tasks_completed = false; break; } } if (all_tasks_completed) { timer->stop(); // 停止定时器 return; } // 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad() == true) { // 如果是负载的状态 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { // 如果到达终点 agvs[i].setLoad(false); // 设置为空载状态 agvs[i].setState(true); std::cout << "agv__id :" << agvs[i].getid() << " ,agv_get_task_id :" << agvs[i].get_task_id() << endl; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (completed_task_index != -1) { tasks[completed_task_index].completed = 2; } task_to_agv(); // 更新任务分配 update(); // 更新AGV状态 } else { // 否则行驶到终点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path = astar.getPath(start_node, end_node1); path.erase(path.begin()); agv_paths[i] = path; // 将路径保存到 agv_paths 中 } } else { // 如果是空载的状态 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { // 如果到达起点 agvs[i].setLoad(true); // 设置为负载状态 } else { // 否则行驶到起点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path = astar.getPath(start_node, end_node); path.erase(path.begin()); agv_paths[i] = path; // 将路径保存到 agv_paths 中 } } } // 将 agv_paths 赋值给类成员变量 paths paths = std::vector<std::vector<Node>>(agv_paths.begin(), agv_paths.end()); },paths = std::vector<std::vector<Node>>(agv_paths.begin(), agv_paths.end()); 報錯:沒有可接受的轉換

最新推荐

recommend-type

解决python脚本中error: unrecognized arguments: True错误

解决这个问题的方法是确保在`conda`命令后加上适当的子命令。例如,如果你想要查看conda的版本,你应该使用`conda --version`而不是`conda -v`。虽然只差一个字符,但这足以导致命令被解析为无效。正确地使用`--`双...
recommend-type

vue webpack打包后图片路径错误的完美解决方法

解决这个问题的方法分为两步: 1. 修改`config/index.js`文件中的`assetsPublicPath`配置。将`assetsPublicPath`设置为`'./'`,这样可以确保资源路径是相对于当前页面的,而不是项目的根目录。例如: ```...
recommend-type

Keras load_model 导入错误的解决方式

为了解决这个问题,你需要按照以下步骤操作: 1. 使用`pip`安装`pydot`: ``` pip install pydot ``` 2. 安装`graphviz`。对于Linux用户,可以使用包管理器安装: ``` sudo apt-get install graphviz ``` ...
recommend-type

JavaScript中${pageContext.request.contextPath}取值问题及解决方案

在JSP里取${pageContext.request.contextPath},方式一是可以正常取到,但方式二却取到的是 字符“${pageContext.request.contextPath}” 方式一: [removed] var t = "${pageContext.request.contextPath}"; ...
recommend-type

关于在labelme批量转化json文件时PermissionError: [Errno 13] Permission denied: ‘F:/zkx/list_path[i]’的解决

首先我要解释一下,很多时候出现这个问题,并不是你的文件有毛病,很可能是你代码读取的路径不对,这就要追究到代码本身。批量转化可以在json_to_dataset文件里直接运行代码实现。这个思路还要感谢我的一个师兄。 ...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。