for train_index, test_index in ss.split(X, y): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] clf.fit(X_train, y_train) y_pred = clf.predict(X_test)
时间: 2023-10-13 21:00:59 浏览: 210
这段代码使用了 StratifiedShuffleSplit 进行数据集划分,将数据集分为训练集和测试集,然后使用分类器 `clf` 对训练集进行训练,并对测试集进行预测,最后得到预测结果 `y_pred`。其中 `train_index` 和 `test_index` 分别为训练集和测试集在原始数据集中的索引,`X_train` 和 `y_train` 分别为训练集的特征和标签,`X_test` 和 `y_test` 分别为测试集的特征和标签。在使用这段代码时,需要确保数据集已经被正确加载,并且 `clf` 分类器已经被正确定义和初始化。可以根据自己的需求,对分类器进行调参和优化,以达到更好的分类效果。
相关问题
解释这段代码每行的意思 def valid_test_slice(Test_X, Test_Y): test_size = rate[2] / (rate[1] + rate[2]) ss = StratifiedShuffleSplit(n_splits=1, test_size=test_size) Test_Y = np.asarray(Test_Y, dtype=np.int32) for train_index, test_index in ss.split(Test_X, Test_Y): X_valid, X_test = Test_X[train_index], Test_X[test_index] Y_valid, Y_test = Test_Y[train_index], Test_Y[test_index] return X_valid, Y_valid, X_test, Y_test
这段代码是一个函数,用于将测试数据分成验证集和测试集。每行代码的意思如下:
1. `def valid_test_slice(Test_X, Test_Y):`:定义一个名为valid_test_slice的函数,该函数需要提供两个参数Test_X和Test_Y,这两个参数分别表示测试数据的特征和标签。
2. `test_size = rate[2] / (rate[1] + rate[2])`:计算测试集的大小,其中rate是一个定义好的比例,rate[1]表示训练集的比例,rate[2]表示测试集的比例。
3. `ss = StratifiedShuffleSplit(n_splits=1, test_size=test_size)`:采用分层随机划分的方式将测试集分成验证集和测试集。其中,StratifiedShuffleSplit是一个sklearn的函数,n_splits参数表示重复操作的次数,test_size参数表示测试集的比例。
4. `Test_Y = np.asarray(Test_Y, dtype=np.int32)`:将测试集的标签转换成int32类型的numpy数组。
5. `for train_index, test_index in ss.split(Test_X, Test_Y):`:对测试集进行划分,得到训练集和测试集的索引。
6. `X_valid, X_test = Test_X[train_index], Test_X[test_index]`:根据得到的索引将测试数据的特征分成验证集和测试集。
7. `Y_valid, Y_test = Test_Y[train_index], Test_Y[test_index]`:根据得到的索引将测试数据的标签分成验证集和测试集。
8. `return X_valid, Y_valid, X_test, Y_test`:返回划分好的验证集和测试集的特征和标签。
请调试这段代码以实现梯度上升模型进行波士顿房价预测,画出预测图,代码如下:import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error plt.style.use('ggplot') # 读入数据 data = pd.read_csv('D:\PycharmProjects\Boston_housing\housing.csv') X, y = data[data.columns.delete(-1)], data['MEDV'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=888) from sklearn.preprocessing import StandardScaler ss_x = StandardScaler() X_train = ss_x.fit_transform(X_train) X_test = ss_x.transform(X_test) ss_y = StandardScaler() y_train = ss_y.fit_transform(y_train.values.reshape(-1, 1)) y_test = ss_y.transform(y_test.values.reshape(-1, 1)) from sklearn import ensemble # params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 1,'learning_rate': 0.01, 'loss': 'ls'} # clf = ensemble.GradientBoostingRegressor(**params) clf = ensemble.GradientBoostingRegressor() clf.fit(X_train, y_train) clf_pre_values = clf.predict(X_test) # 预测值 print('SCORE:{:.4f}'.format(clf.score(X_test, y_test))) # 模型评分 print('RMSE:{:.4f}'.format(np.sqrt(mean_squared_error(y_test, clf_pre_values)))) # RMSE(标准误差) clf_pre = pd.DataFrame() clf_pre['Predict'] = clf_pre_values clf_pre['Truth'] = y_test.reset_index(drop=True) clf_pre.plot(figsize=(18, 8)) plt.figure() plt.show()
根据您提供的代码,我注意到您的代码中没有明确指定数据文件的路径。请确保`housing.csv`文件与您的代码在同一个文件夹中,并将文件的路径正确指定为相对路径或绝对路径。
另外,您的代码中没有导入`matplotlib.pyplot`模块。请在代码的开头添加以下导入语句:
```python
import matplotlib.pyplot as plt
```
这样才能正确使用`plt.figure()`和`plt.show()`函数。
请尝试调试代码并确保数据文件路径正确,导入所需的模块,并重新运行代码。希望能帮到您!如果还有其他问题,请随时提问。
阅读全文