SNRdB = 0:5:30; num_runs = zeros(1,length(SNRdB));%发送次数 bernum_no_est = zeros(1,length(SNRdB));%错误比特数 ber_no_est = zeros(1,length(SNRdB));%误码率 blenum = zeros(1,length(SNRdB));%错误块数 bernum = zeros(1,length(SNRdB));%错误比特数 ber = zeros(1,length(SNRdB));%误码率 LS_est = zeros(length(pilot),Nofdm); % 导频信道 H_LS = zeros(Nfft,Nofdm); % 估计信道 H_mmse = zeros(Nfft,Nofdm); rsig_equal = zeros(Nfft,Nofdm); dsym = zeros(Nused,Nofdm); dsym_no_est = zeros(Nused,Nofdm); dmsg_no_est = zeros(Nused*log2(M),Nofdm); dmsg = zeros(Nused*log2(M),Nofdm); tic for ii = 1:length(SNRdB) for i_run = 1 : max_runs if mod(i_run, max_runs/resolution) == 1 disp(['Simualtion Running = ' num2str(i_run/max_runs)]) disp(['SNRdB = ' num2str(SNRdB(ii))]); disp(['blenum = ' num2str(blenum(ii))]); disp(['num_runs = ' num2str(num_runs(ii))]); disp(['ber = ' num2str(ber(ii))]); end什么意思?

时间: 2024-04-02 11:35:38 浏览: 24
这段代码是一个用于模拟无线通信系统的程序。它将会模拟在不同信噪比下的通信情况。具体来说,程序中的变量SNRdB是信噪比的取值范围,max_runs是每个信噪比下模拟的发送次数。程序将会统计每个信噪比下的误码率、错误比特数、错误块数等性能指标,并将其存储在对应的变量中。程序中还包含了信道估计和信道均衡的过程,以及用于数据传输的调制解调过程。最后,程序中的tic和toc函数用于计算程序的运行时间。
相关问题

clear all; bits_option =2; % 0:??????,1:??????,2:?????? noise_option=1; % 0:??????,1:?????? b=4;NT=2; SNRdBs=[0:2:20];sq05=sqrt(0.5); nobe_target =500; BER_target =1e-3; raw_bit_len= 2592-6; nterleaving_num = 72; deinterleaving_num = 72;deinterleaving_num=72; N_frame = 1e8; for i_SNR=1:length(SNRdBs) sig_power=NT;SNRdB=SNRdBs(i_SNR); sigma2=sig_power*10^(-SNRdB/10)*noise_option;sigmal=sqrt(sigma2/2); nobe = 0; Viterbi_init for i_frame=1:1:N_frame 详细注释这段Matlab代码

这段Matlab代码是一个卷积码的性能评估程序,主要用于模拟不同信噪比下卷积码的误码率。下面是代码的详细注释: ``` % 清空所有变量 clear all; % 指定输入比特流的类型 bits_option =2; % 0:随机比特流,1:0比特流,2:1比特流 % 指定噪声类型 noise_option=1; % 0:AWGN,1:瑞利信道 % 码率和符号数 b=4; NT=2; % 指定信噪比的范围 SNRdBs=[0:2:20]; % 计算根号0.5 sq05=sqrt(0.5); % 目标误码数和误码率 nobe_target =500; BER_target =1e-3; % 输入比特流长度 raw_bit_len= 2592-6; % 交织、反交织参数 nterleaving_num = 72; deinterleaving_num = 72; deinterleaving_num=72; % 模拟帧数 N_frame = 1e8; % 循环计算不同信噪比下的误码率 for i_SNR=1:length(SNRdBs) sig_power=NT; SNRdB=SNRdBs(i_SNR); sigma2=sig_power*10^(-SNRdB/10)*noise_option; sigmal=sqrt(sigma2/2); nobe = 0; Viterbi_init for i_frame=1:1:N_frame % 在这里对卷积码进行模拟,并统计误码率 % ... end end ``` 其中,循环内的部分代码是主要的卷积码性能评估代码,用于模拟卷积码在不同信噪比下的误码率。具体的实现细节需要根据实际的卷积码来确定。

clear all; close all; clc; tic bits_options = [0,1,2]; noise_option = 1; b = 4; NT = 2; SNRdBs =[0:2:20]; sq05=sqrt(0.5); nobe_target = 500; BER_target = 1e-3; raw_bit_len = 2592-6; interleaving_num = 72; deinterleaving_num = 72; N_frame = 1e8; for i_bits=1:length(bits_options) bits_option=bits_options(i_bits); BER=zeros(size(SNRdBs)); for i_SNR=1:length(SNRdBs) sig_power=NT; SNRdB=SNRdBs(i_SNR); sigma2=sig_power10^(-SNRdB/10)noise_option; sigma1=sqrt(sigma2/2); nobe = 0; Viterbi_init for i_frame=1:1:N_frame switch (bits_option) case {0}, bits=zeros(1,raw_bit_len); case {1}, bits=ones(1,raw_bit_len); case {2}, bits=randi(1,raw_bit_len,[0,1]); end encoding_bits = convolution_encoder(bits); interleaved=[]; for i=1:interleaving_num interleaved=[interleaved encoding_bits([i:interleaving_num:end])]; end temp_bit =[]; for tx_time=1:648 tx_bits=interleaved(1:8); interleaved(1:8)=[]; QAM16_symbol = QAM16_mod(tx_bits, 2); x(1,1) = QAM16_symbol(1); x(2,1) = QAM16_symbol(2); if rem(tx_time-1,81)==0 H = sq05(randn(2,2)+jrandn(2,2)); end y = Hx; if noise_option==1 noise = sqrt(sigma2/2)(randn(2,1)+j*randn(2,1)); y = y + noise; end W = inv(H'H+sigma2diag(ones(1,2)))H'; X_tilde = Wy; X_hat = QAM16_slicer(X_tilde, 2); temp_bit = [temp_bit QAM16_demapper(X_hat, 2)]; end deinterleaved=[]; for i=1:deinterleaving_num deinterleaved=[deinterleaved temp_bit([i:deinterleaving_num:end])]; end received_bit=Viterbi_decode(deinterleaved); for EC_dummy=1:1:raw_bit_len, if bits(EC_dummy)~=received_bit(EC_dummy), nobe=nobe+1; end if nobe>=nobe_target, break; end end if (nobe>=nobe_target) break; end end = BER(i_SNR) = nobe/((i_frame-1)*raw_bit_len+EC_dummy); fprintf('bits_option:%d,SNR:%d dB,BER:%1.4f\n',bits_option,SNRdB,BER(i_SNR)); end figure; semilogy(SNRdBs,BER); xlabel('SNR(dB)'); ylabel('BER'); title(['Bits_option:',num2str(bits_option)]); grid on; end将这段代码改为有噪声的情况

以下是添加噪声后的修改代码: clear all; close all; clc; tic bits_options = [0,1,2]; noise_option = 1; b = 4; NT = 2; SNRdBs =[0:2:20]; sq05=sqrt(0.5); nobe_target = 500; BER_target = 1e-3; raw_bit_len = 2592-6; interleaving_num = 72; deinterleaving_num = 72; N_frame = 1e8; for i_bits=1:length(bits_options) bits_option=bits_options(i_bits); BER=zeros(size(SNRdBs)); for i_SNR=1:length(SNRdBs) sig_power=NT; SNRdB=SNRdBs(i_SNR); sigma2=sig_power*10^(-SNRdB/10)+noise_option; sigma1=sqrt(sigma2/2); nobe = 0; Viterbi_init for i_frame=1:1:N_frame switch (bits_option) case {0}, bits=zeros(1,raw_bit_len); case {1}, bits=ones(1,raw_bit_len); case {2}, bits=randi(1,raw_bit_len,[0,1]); end encoding_bits = convolution_encoder(bits); interleaved=[]; for i=1:interleaving_num interleaved=[interleaved encoding_bits([i:interleaving_num:end])]; end temp_bit =[]; for tx_time=1:648 tx_bits=interleaved(1:8); interleaved(1:8)=[]; QAM16_symbol = QAM16_mod(tx_bits, 2); x(1,1) = QAM16_symbol(1); x(2,1) = QAM16_symbol(2); if rem(tx_time-1,81)==0 H = sq05*(randn(2,2)+j*randn(2,2)); end y = H*x; if noise_option==1 noise = sqrt(sigma2/2)*(randn(2,1)+j*randn(2,1)); y = y + noise; end W = inv(H'*H+sigma2*diag(ones(1,2)))*H'; X_tilde = W*y; X_hat = QAM16_slicer(X_tilde, 2); temp_bit = [temp_bit QAM16_demapper(X_hat, 2)]; end deinterleaved=[]; for i=1:deinterleaving_num deinterleaved=[deinterleaved temp_bit([i:deinterleaving_num:end])]; end received_bit=Viterbi_decode(deinterleaved); for EC_dummy=1:1:raw_bit_len, if bits(EC_dummy)~=received_bit(EC_dummy), nobe=nobe+1; end if nobe>=nobe_target, break; end end if (nobe>=nobe_target) break; end end BER(i_SNR) = nobe/((i_frame-1)*raw_bit_len+EC_dummy); fprintf('bits_option:%d,SNR:%d dB,BER:%1.4f\n',bits_option,SNRdB,BER(i_SNR)); end figure; semilogy(SNRdBs,BER); xlabel('SNR(dB)'); ylabel('BER'); title(['Bits_option:',num2str(bits_option)]); grid on; end

相关推荐

clear all; close all; clc;ticits_option = 2;noise_option = 1;raw_bit_len = 2592-6;interleaving_num = 72;deinterleaving_num = 72;N_frame = 1e4;SNRdBs = [0:2:20];sq05 = sqrt(0.5);bits_options = [0, 1, 2]; % 三种bits-option情况obe_target = 500;BER_target = 1e-3;for i_bits = 1:length(bits_options) bits_option = bits_options(i_bits); BER = zeros(size(SNRdBs)); for i_SNR = 1:length(SNRdBs) sig_power = 1; SNRdB = SNRdBs(i_SNR); sigma2 = sig_power * 10^(-SNRdB/10); sigma = sqrt(sigma2/2); nobe = 0; for i_frame = 1:N_frame switch bits_option case 0 bits = zeros(1, raw_bit_len); case 1 bits = ones(1, raw_bit_len); case 2 bits = randi([0,1], 1, raw_bit_len); end encoding_bits = convolution_encoder(bits); interleaved = []; for i = 1:interleaving_num interleaved = [interleaved encoding_bits([i:interleaving_num:end])]; end temp_bit = []; for tx_time = 1:648 tx_bits = interleaved(1:8); interleaved(1:8) = []; QAM16_symbol = QAM16_mod(tx_bits, 2); x(1,1) = QAM16_symbol(1); x(2,1) = QAM16_symbol(2); if rem(tx_time - 1, 81) == 0 H = sq05 * (randn(2,2) + j * randn(2,2)); end y = H * x; if noise_option == 1 noise = sigma * (randn(2,1) + j * randn(2,1)); y = y + noise; end W = inv(H' * H + sigma2 * diag(ones(1,2))) * H'; K_tilde = W * y; x_hat = QAM16_slicer(K_tilde, 2); temp_bit = [temp_bit QAM16_demapper(x_hat, 2)]; end deinterleaved = []; for i = 1:deinterleaving_num deinterleaved = [deinterleaved temp_bit([i:deinterleaving_num:end])]; end received_bit = Viterbi_decode(deinterleaved); for EC_dummy = 1:1:raw_bit_len if nobe >= obe_target break; end if received_bit(EC_dummy) ~= bits(EC_dummy) nobe = nobe + 1; end end if nobe >= obe_target break; end end BER(i_SNR) = nobe / (i_frame * raw_bit_len); fprintf('bits-option: %d, SNR: %d dB, BER: %1.4f\n', bits_option, SNRdB, BER(i_SNR)); end figure; semilogy(SNRdBs, BER); xlabel('SNR (dB)'); ylabel('BER'); title(['Bits-Option: ', num2str(bits_option)]); grid on;end注释这段matlab代码

clear all; close all; clc;tic 5%8866% Settings $8868% its_option =2; 966 0:??????,1:??????,2:?????? hoise_option=1; 8% 0:??????,1:?????? =4;NT=2; SNRdBs=[0:2:20];sq05=sqrt(0.5); obe_target =500; BER_target =1e-3; taw_bit_len= 2592-6; nterleaving_num = 72; deinterleaving_num = 72; _frame = 1e8; or i_SNR=1:length(SNRdBs) sig_power=NI;SNRdB=SNRdBs(i_SNR); sigma2=sig_power*10°(-SNRdB/10)*noise_option;sigmal=sqrt(sigma2/2); nobe = 0; Viterbi_init for i_frame=1:1:N_frame I %%88688868896%% ??????866988689686836% switch (bits_option) case (0】, bits=zeros(1,raw_bit_len); case (11, bits=ones(1,raw_bit_len); casef2), bits=randint(1,raw_bit_len); case (2), bits=randi(1,1,raw_bit_len)-1; end 686%6% ?????88%6% encoding_bits= convolution_encoder(bits); 6%%8%% ????? 8686% interleaved=[]; for i=l:interleaving_mum interleaved=[interleavedencoding_bits([i:interleaving_mum:end])];for tx_time-l:648 tx_bits=interleaved(1:8); interleaved(1:8)=[J; ??7 QAM16_symbol=QAM16_mod(tx_bits, 2); ?????69686666366685669 x(1,1) =QAM16_symbol(1);x(2,h)=QAM16_symbol(2); 90969696%????????????? 636585863666666 if rem(tx_time-1,81)==0 H = sq05*(randn(2,2)+j*randn(2,2)); end y =H*x; 66986896%88868% ????? 6688688%%88%% noise = sqrt(sigma2/2)*(randn(2,1)+j*randn(2,1)); if noise_option==1, y = y + noise;end %8%8%88%%8%8% ??????668888688888%% W=inv(H'*H+sigma2*diag (ones(1,2)))*H'; K_tilde =W*y; %%%%88%%8%8% ??????668888%58888%% x_hat = QAM16_slicer(X_tilde, 2); temp_bit=[temp_bit QAM16_denapper(X_hat, 2)]; end %%%8%%%%?????88%8886% deinterleaved=[]; for i=1:deinterleaving_rum deinterleaved=[deinterleaved temp_bit([i:deinterleaving_mum:end])];end %%%86%%%?22220%%%866% received_bit=Viterbi_decode(deinterleaved) 600%%22222 5%0%% for EC_dummy=1:1:raw_bit_len, A bit(BC dumnv) nahesnobe+1:endif nobe>=nobe_target, break; end end if (nobe>=nobe_target) break; end end %8%888888%%%%save BER data & Display 8%88%8888%88%BER(i_SNR)=nobe/((i_frame-1)*raw_bit_len+EC_dummy);fprintf(’t%dt\t%1.4f\n', SNRdB,BER(i_SNR)); if BER(i_SMR)<BER_target, break; end end详细注释这段matlab代码

clear all; %% 参数设置 M = 4; % 调制阶数 N = 1e5; % 仿真比特数 SNRdB = 0:1:14; % 信噪比范围 Es = 1; % 符号能量 Eb = Es / log2(M); % 比特能量 sigma = sqrt(Es ./ (2 * 10 .^ (SNRdB/10)));% 噪声标准差 %% 信源产生信息比特 bits = randi([0, 1], 1, N); %% 调制 symbols = zeros(1, N/2); for i = 1:N/2 if bits(2i-1)==0 && bits(2i)==0 symbols(i) = -3; elseif bits(2i-1)==0 && bits(2i)==1 symbols(i) = -1; elseif bits(2i-1)==1 && bits(2i)==0 symbols(i) = 1; elseif bits(2i-1)==1 && bits(2i)==1 symbols(i) = 3; end end %% 信道 noises = randn(1, N/2) .* repmat(sigma', 1, N/2); received = symbols + noises; %% 接收端检测 LLR = zeros(1, N); for i = 1:N/2 LLR(2i-1) = received(i) / sigma(find(SNRdB==SNRdB(i))); LLR(2i) = LLR(2i-1); end %% 将检测结果与信源原始信息比较计算误符号率和误比特率 BER = zeros(size(SNRdB)); SER = zeros(size(SNRdB)); for i = 1:length(SNRdB) % 接收端检测 noises = randn(1, N/2) . sigma(i); received = symbols + noises; LLR = zeros(1, N); for j = 1:N/2 LLR(2j-1) = received(j) / sigma(i); LLR(2j) = LLR(2j-1); end % 软判决译码 bits_hat = zeros(1, N); for j=1:N/2 if LLR(2j-1)>0 bits_hat(2j-1) = 1; end if LLR(2j)>0 bits_hat(2j) = 1; end end % 统计误码率 BER(i) = sum(bits~=bits_hat) / N; SER(i) = sum(symbols~=received) / (N/2); end %% 作图 semilogy(SNRdB, SER, 'k-o', 'linewidth', 2); hold on; semilogy(SNRdB, qfunc(sqrt(210.^(SNRdB/10))), 'r', 'linewidth', 2); grid on; xlabel('SNR(dB)'); ylabel('Symbol Error Rate'); legend('Simulation', 'Theory'); 出现错误索引超出数组元素的数目(15)。 出错 Untitled (第 36 行) LLR(2*i-1) = received(i) / sigma(find(SNRdB==SNRdB(i)));更改形成新的MATLAB程序

clear, clf %%%************** 参数设置 Nfft=128; % FFT size Nbps=2; M=2^Nbps; % Number of bits per (modulated) symbol Es=1; A=sqrt(3/2/(M-1)*Es); % Signal energy and QAM normalization factor N=Nfft; Ng=Nfft/4; %CP长度 Nofdm=Nfft+Ng; %OFDM符号长度+CP长度 Nsym=3; x=[]; Nps = 8; %梳状导频中非零值间隔 %%%%****频偏设置 CFO = 3.75; % CFO = 0; for m=1:Nsym msgint=randi([0 M-1],1,N); %bits_generator(1,Nsym*N,Nbps) if m<=2 Xp = add_pilot(zeros(1,Nfft),Nfft,Nps); Xf=Xp; % add_pilot Xf_temp = Xp; %后续会用到用于算整数倍频偏 else Xf = A.*qammod(msgint,M,'UnitAveragePower',true); end xt = ifft(Xf,Nfft); x_sym = add_CP(xt,Ng); x= [x x_sym]; end %************************* 信道 ************** %channel 可添加所需信道 y=x; % No channel effect %信号功率计算 sig_pow= y*y'/length(y); % Signal power calculation %%%%%%%%SNRdB设置 SNRdBs= 0:3:30; MaxIter = 1000; MSE_train = zeros(1,length(SNRdBs)); for i=1:length(SNRdBs) SNRdB = SNRdBs(i); MSE_CFO_CP = 0; MSE_CFO_train = 0; y_CFO= add_CFO(y,CFO,Nfft); % Add CFO %%%%多次迭代取平均 for iter=1:MaxIter %y_aw=add_AWGN(y_CFO,sig_pow,SNRdB,'SNR',Nbps); % AWGN added, signal power=1 y_aw = awgn(y_CFO,SNRdB,'measured'); % AWGN added, signal power=1 %%%%% 估计出来的频偏只能在[-0.5*D,0.5*D],也即[-0.5*Nps,0.5*Nps] Est_CFO_train = CFO_train_sim1(y_aw,Nfft,Nps); MSE_CFO_train = MSE_CFO_train + (Est_CFO_train-CFO)^2; end % the end of for (iter) loop MSE_train(i) = MSE_CFO_train/MaxIter; end%ebn0 end semilogy(SNRdBs, MSE_train,'-x'); xlabel('SNR[dB]'); ylabel('MSE'); title('CFO Estimation'); legend('时域训练序列')这段代码的实现过程

请解释一下如下代码b=1; % 系统参数b固定 min_a=0; % 参数a最小 div_a=0.01; % 参数a迭代步长 max_a=1; % 参数a最大 M=(max_a-min_a)/div_a+1; % 参数a迭代次数 alp=1.8; snrdb=50; snr=10^(snrdb/10); load EPSI1; sig1=EPSI1(12800+1:12800+1280); % 取第101至110个周期的EP信号 NN=1000; % 重采样率 s1=interp(sig1(1:128*3),NN); N=length(s1); % 随机微分方程数值解的点数 tt=1/NN; % 随机微分方程数值解的时间步长 MM=2; % 独立运行的次数 mm=1; d=zeros(MM,1); a_est=zeros(MM,1); for index=1:MM % v0=randn(N,1); gamma=1; p=alp; v1=(alpha(N,alp,0,gamma,0))'; s1=gamma*sqrt(snr)*s1/std(s1); % 用噪声强度(分散系数为1)和信噪比来确定信号大小 x1=s1+v1; % x1=atan(x1); % x1=abs(x1).^(alp-1).*sign(x1); %---algorithm--- y1=zeros(N,M); xx1=zeros(N/NN,1); yy1=zeros(N/NN,M); c_coe1=zeros(M,1); m=1; for a=min_a:div_a:max_a; y1(1,1)=1; for n=1:N-1 y1(n+1,m)=y1(n,m)+tt*(a*y1(n,m)-b*y1(n,m)^3+x1(n)); end xx1=downsample(x1,NN); yy1(:,m)=downsample(y1(:,m),NN); ss1=downsample(s1,NN); xx1_yy1(m)=(1/length(xx1))*sum(xx1.*(abs(yy1(:,m)).^(p-1).*sign(yy1(:,m)))); % 计算输入输出的对称共变系数c_cor yy1_xx1(m)=(1/length(yy1(:,m)))*sum(yy1(:,m).*(abs(xx1).^(p-1).*sign(xx1))); xx1_xx1(m)=(1/length(xx1))*sum(xx1.*(abs(xx1).^(p-1).*sign(xx1))); yy1_yy1(m)=(1/length(yy1(:,m)))*sum(yy1(:,m).*(abs(yy1(:,m)).^(p-1).*sign(yy1(:,m)))); c_coe1(m)=(xx1_yy1(m)*yy1_xx1(m))/(xx1_xx1(m)*yy1_yy1(m)); % 对称共变系数 m=m+1; end [val1,loc1]=max(c_coe1);% 确定最佳a值a_est、 a_est(mm)=(loc1-1)*div_a+min_a; cc_ss1yy1=xcov(ss1,abs(yy1(:,loc1)).^(p-1).*sign(yy1(:,loc1))); % 了解随机共振系统的延时d,应该a相同时看延时是否相同 [val,loc]=max(cc_ss1yy1); d(mm)=length(ss1)-loc; mm=mm+1; end a_est d dd=mean(d) figure(1) % 观察最佳a值a_est时的输入xx1、输出yy1(:,loc1) subplot(411),plot(ss1) subplot(412),plot(xx1) loc=(a_est(mm-1)-min_a)/div_a+1 % 众数? subplot(413),plot(yy1(:,loc)) a=min_a:div_a:max_a; subplot(414),plot(a,c_coe1,'*')

最新推荐

recommend-type

基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示(毕业设计&课程设计)

基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 项目简介: 本选课系统开源协议基于GPL协议,仅用作交流学习用途。 本系统采用了前后端分离的开发模式,后端采用Springmvc+Hibernate框架。 前端使用AngularJs+JQuery+Bootstrap开发,并且使用前端构建工具Gulp。
recommend-type

51单片机模拟汽车左右转向灯控制系统的源代码和仿真电路

免费开源《基于51单片机的模拟汽车左右转向灯控制系统》的源代码和仿真电路,含c程序源码、Proteus仿真电路。 //功能:汽车左右转向灯程序 #include <REGX51.H> //包含头文件REGX51.H sbit LEDL1=P0^0; //定义P0.0引脚位名称为LEDL1,左前转向灯 sbit LEDL2=P0^1; //定义P0.1引脚位名称为LEDL2,左后转向灯 sbit LEDR1=P0^2; //定义P0.2引脚位名称为LEDR1,右前转向灯 sbit LEDR2=P0^3; //定义P0.3引脚位名称为LEDR2,右后转向灯 sbit S1=P1^0; //定义P1.0引脚位名称为S1,S1为0,左转向灯闪烁 sbit S2=P1^1; //定义P1.1引脚位名称为S2,S2为0,右转向灯闪烁 //函数名:delay //函数功能:实现软件延时 //形式参数:无符号整型变量i //返回值:无 void delay(unsigned int i) { wh
recommend-type

windows hot key

windows 下常用的热键脚本配置
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Python高级加密库cryptography

![【进阶】Python高级加密库cryptography](https://img-blog.csdnimg.cn/20191105183454149.jpg) # 2.1 AES加密算法 ### 2.1.1 AES加密原理 AES(高级加密标准)是一种对称块密码,由美国国家标准与技术研究院(NIST)于2001年发布。它是一种分组密码,这意味着它一次处理固定大小的数据块(通常为128位)。AES使用密钥长度为128、192或256位的迭代密码,称为Rijndael密码。 Rijndael密码基于以下基本操作: - 字节替换:将每个字节替换为S盒中的另一个字节。 - 行移位:将每一行